Age-related hearing loss (presbyacusis) has a complex etiology. Results from animal models detailing the effects of specific cochlear injuries on audiometric profiles may be used to understand the mechanisms underlying hearing loss in older humans and predict cochlear pathologies associated with certain audiometric configurations ("audiometric phenotypes"). Patterns of hearing loss associated with cochlear pathology in animal models were used to define schematic boundaries of human audiograms. Pathologies included evidence for metabolic, sensory, and a mixed metabolic + sensory phenotype; an older normal phenotype without threshold elevation was also defined. Audiograms from a large sample of older adults were then searched by a human expert for "exemplars" (best examples) of these phenotypes, without knowledge of the human subject demographic information. Mean thresholds and slopes of higher frequency thresholds of the audiograms assigned to the four phenotypes were consistent with the predefined schematic boundaries and differed significantly from each other. Significant differences in age, gender, and noise exposure history provided external validity for the four phenotypes. Three supervised machine learning classifiers were then used to assess reliability of the exemplar training set to estimate the probability that newly obtained audiograms exhibited one of the four phenotypes. These procedures classified the exemplars with a high degree of accuracy; classifications of the remaining cases were consistent with the exemplars with respect to average thresholds and demographic information. These results suggest that animal models of age-related hearing loss can be used to predict human cochlear pathology by classifying audiograms into phenotypic classifications that reflect probable etiologies for hearing loss in older humans.
Hearing thresholds in elderly humans without a history of noise exposure commonly show a profile of a flat loss at low frequencies coupled with a loss that increases with frequency above approximately 2 kHz. This profile and the relatively robust distortion product otoacoustic emissions that are found in elderly subjects challenge the common belief that age-related hearing loss (presbyacusis) is based primarily on sensory-cell disorders. Here, we examine a model of presbyacusis wherein the endocochlear potential (EP) is reduced by means of furosemide applied chronically to one cochlea of a young gerbil. The model results in an EP that is reduced from 90 to approximately 60 mV, a value often seen in quiet-aged gerbils, with no concomitant loss of hair cells. Resulting measures of cochlear and neural function are quantitatively similar to those seen in aging gerbils and humans, e.g., a flat threshold loss at low frequencies with a high-frequency roll-off of approximately -8.4 dB/octave. The effect of the EP on neural thresholds can be parsimoniously explained by the known gain characteristics of the cochlear amplifier as a function of cochlear location: in the apex, amplification is limited to approximately 20 dB, whereas in the base, the gain can be as high as 60 dB. At high frequencies, amplification is directly proportional to the EP on an approximately 1 dB/mV basis. This model suggests that the primary factor in true age-related hearing loss is an energy-starved cochlear amplifier that results in a specific audiogram profile.
1. Characteristic frequencies (CF), spontaneous rates (SR), and thresholds were recorded from single fibers in the auditory nerves of gerbils aged for 36 mo in a quiet vivarium. The data from the quiet-aged animals were compared with similar data obtained previously from young controls. Fibers were classified as "low-SR" if their spontaneous rates were < or = 18 spikes/s and "high SR" for higher rates. 2. For CFs > 6 kHz, the percentage of low-SR fibers contacted declined from 57% of the population in young gerbils to 29% in the aged gerbils. This population change is statistically significant (P < 0.01). At CFs < 6 kHz, the population demographics did not change significantly with age, with the low-SR fibers comprising 30 and 39% of the population, respectively, for the young and aged animals. 3. To further test the hypothesis that low-SR fibers with CFs > 6 kHz become less active with age, additional experiments were conducted to examine the recovery of the compound action potential (CAP) response from prior high-level stimuli. Previous work has shown that the CAP recovery curve has two segments: a fast segment associated with the high-SR fibers and a slow segment associated with the low-SR fibers. The curves obtained from quiet aged gerbils show a faster recovery than young controls for probe tones at 8 and 16 kHz, but not at 2 and 4 kHz. Thus these results agree with our single-fiber data indicating that there is a loss of low-SR activity for CFs > 6 kHz in the aged animals. 4. Low-SR fibers typically have larger dynamic ranges than those of high-SR fibers, are better able to preserve information concerning stimulus timing and amplitude modulation, and their responses are more robust in the presence of masking noise. Moreover, low-SR fibers are likely inputs to the crossed-olivocochlear reflex, a reflex that serves an antimasking role in the detection of sounds in a binaural noise field. If true for humans, the loss of the low-SR system could explain many of the hearing deficits often seen in older individuals; e.g., decreased ability to understand speech in noise, changes in masking level differences, and decreased ability to localize sound sources using binaural cues.
Bone marrow (BM)-derived stem cells have shown plasticity with a capacity to differentiate into a variety of specialized cells. To test the hypothesis that some cells in the inner ear are derived from BM, we transplanted either isolated whole BM cells or clonally expanded hematopoietic stem cells (HSCs) prepared from transgenic mice expressing enhanced green fluorescent protein (EGFP) into irradiated adult mice. Isolated GFP + BM cells also were transplanted into conditioned newborn mice derived from pregnant mice injected with busulfan (which ablates HSCs in the newborns). Quantification of GFP + cells was performed 3-20 months after transplant. GFP + cells were found in the inner ear with all transplant conditions. They were most abundant within the spiral ligament but were also found in other locations normally occupied by fibrocytes and mesenchymal cells. No GFP + neurons or hair cells were observed in inner ears of transplanted mice. Dual immunofluorescence assays demonstrated that most of the GFP + cells were negative for CD45, a macrophage and hematopoietic cell marker. A portion of the GFP + cells in the spiral ligament expressed immunoreactive Na, K-ATPase or the Na-K-Cl transporter (NKCC), proteins used as markers for specialized ion transport fibrocytes. Phenotypic studies indicated that the GFP + cells did not arise from fusion of donor cells with endogenous cells. This study provides the first evidence for the origin of inner ear cells from BM and more specifically from HSCs. The results suggest that mesenchymal cells, including fibrocytes in the adult inner ear, may be derived continuously from HSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.