This paper reviews the role of mast cells in the development and progression of basal cell carcinoma, squamous cell carcinoma and malignant melanoma. Mast cells accumulate around cutaneous malignancies. Current evidence suggests that mast cells contribute to the tumorigenesis of cutaneous malignancies through four mechanisms. (1) Immunosuppression: Ultraviolet-B radiation, the most important initiator of cutaneous malignancies, activates mast cells. Upon irradiation of the skin, trans-urocanic acid in the epidermis isomerizes to cis-urocanic acid, which stimulates neuropeptide release from neural c-fibers. These neuropeptides in turn trigger histamine secretion from mast cells, leading to suppression of the cellular immune system. (2) Angiogenesis: Mast cells are the major source of vascular endothelial growth factor in basal cell carcinoma and malignant melanoma. Vascular endothelial growth factor is one of the most potent angiogenic factors, which also induces leakage of other angiogenic factors across the endothelial cell wall into the matrix. Mast cell proteases reorganize the stroma to facilitate endothelial cell migration. As well, heparin, the dominant mast cell proteoglycan, assists in blood-borne metastasis. (3) Degradation of extracellular matrix: Through its own proteases, and indirectly via interaction with other cells, mast cells participate in degradation of the matrix, which is required for tumor spread. (4) Mitogenesis: Mast cell mediators including fibroblast growth factor-2 and interleukin-8 are mitogenic to melanoma cells. Current evidence supports an accessory role for mast cells in the development and progression of cutaneous malignancies. Emerging data, however, also suggest that mast cells might, in fact, have opposing roles in tumor biology, and the microenvironment could polarize mast cells to possess either promoting or inhibitory effects on tumors.
Hemangioma is a primary tumor of the microvasculature in which angiogenesis is initially excessive, followed by spontaneous regression of the newly formed vessels, with the cellular parenchyma gradually being replaced with fibrofatty tissue. Mast cells, which are highly heterogenous in terms of their morphology, function, and metabolic products, have been implicated in the pathophysiology of hemangioma. Csaba stain shows that mast cells are predominantly of the biogenic amine phenotype throughout the development of hemangioma. The predominance of this phenotype remains unaltered following successful steroid therapy, although their number increases fourfold. Mast cells, all of which stain positive for tryptase, and those that stain positive for chymase as well, have been identified in hemangioma biopsy specimens throughout the three developmental phases. The total number of mast cells is highest during the involuting phase, less in the involuted phase, and least in the proliferative phase. The proportion of mast cells that contain both tryptase and chymase decreases from the proliferative through involuting to the involuted phase. This decreasing proportion of mast cells that contain both tryptase and chymase with ongoing involution parallels that of progressive deposition of the extracellular matrix as indicated by increasing fibrosis and fatty deposition. The short-chain type VIII collagen, thought to play a key role in angiogenesis, has been detected throughout the developmental phases of hemangioma. It has been postulated that this collagen, which is produced early in new vessel development, provides a substratum to facilitate the migration of endothelial cells. It may also facilitate the deposition of other extracellular constituents and influence cell movement and the maintenance of cell phenotypes. The intracellular localization of type VIII collagen in mast cells only in the early proliferative phase suggests that there is an active synthesis by mast cells during this phase. The increasing extracellular localization during hemangioma development may be caused by an increased secretion of protein from intracellular stores. The increased number of mast cells during the involuting phase indicates that these cells may play a role in the regression of hemangioma. This is in contrast to the large body of evidence showing the proangiogenic role of mast cells. The proportion of proliferating mast cells decreases, whereas the proportion of mast cells positive for clusterin/apolipoprotein J increases with ongoing involution of hemangioma. Clusterin/apolipoprotein J expression has been considered as a prominent marker of apoptotic cell loss. The presence of clusterin/apolipoprotein J granules both in the adjacent endothelial cells and in capillary lumens suggests that mast cells may be secreting this apoptotic modulator to promote the regression of hemangioma. Certain effectors produced by mast cells may participate in the development of hemangioma. It has been proposed that one of the functions of mast cells is to r...
Urocanic acid, imidazole propenoic acid, is a metabolic product of histidine, which accumulates in skin and is excreted in sweat. It absorbs UV radiation at wavelengths shorter than 340 nm, and its principal photochemical reaction is a trans‐cis isomerization about the propenyl double bond. This isomerization to the biologically active cis isomer is implicated in the photo‐induced suppression of the immune system of skin. The kinetics of the trans→cis photoisomerization of urocanic acid has been determined in a number of solvents, spanning a range of polarities. The initial rates of isomerization and the photostationary trans‐cis compositions, in all solvents except water, correlate linearly with solvent polarity. This indicates that the isomerization proceeds through a polar intermediate that is stabilized by coulombic interactions with the molecular environment.
ICG at concentrations of 0.5% and below do not reduce proliferation of Tenon capsule fibroblasts. ICG did not potentiate or diminish the effect of MMC on Tenon capsule fibroblast proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.