Heterochromatin normally has prescribed chromosomal positions and must not encroach on adjacent regions. We demonstrate that the fission yeast protein Epe1 stabilises silent chromatin, preventing the oscillation of heterochromatin domains. Epe1 loss leads to two contrasting phenotypes: alleviation of silencing within heterochromatin and expansion of silent chromatin into neighbouring euchromatin. Thus, we propose that Epe1 regulates heterochromatin assembly and disassembly, thereby affecting heterochromatin integrity, centromere function and chromosome segregation fidelity. Epe1 regulates the extent of heterochromatin domains at the level of chromatin, not via the RNAi pathway. Analysis of an ectopically silenced site suggests that heterochromatin oscillation occurs in the absence of heterochromatin boundaries. Epe1 requires predicted iron- and 2-oxyglutarate (2-OG)-binding residues for in vivo function, indicating that it is probably a 2-OG/Fe(II)-dependent dioxygenase. We suggest that, rather than being a histone demethylase, Epe1 may be a protein hydroxylase that affects the stability of a heterochromatin protein, or protein–protein interaction, to regulate the extent of heterochromatin domains. Thus, Epe1 ensures that heterochromatin is restricted to the domains to which it is targeted by RNAi.
Heterochromatin performs a central role in chromosome segregation and stability by promoting cohesion at centromeres. Establishment of both heterochromatin-mediated silencing and cohesion requires passage through S phase, although the mechanism is unknown. Here we demonstrate that Schizosaccharomyces pombe Hsk1 (CDC7), a conserved Dbf4-dependent protein kinase (DDK) that regulates replication initiation, interacts with and phosphorylates the heterochromatin protein 1 (HP1) equivalent Swi6 (ref. 6). Hsk1 and its regulatory subunit Dfp1 function downstream of Swi6 localization to promote heterochromatin function and cohesion specifically at centromeres. This role for Hsk1-Dfp1 is separable from its replication initiation activity, providing a temporal link between S phase and centromere cohesion that is mediated by heterochromatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.