[1] Using a coupled regional climate-hydrologic modeling system, RAMS-Hydro, we investigate the role of the water table dynamics in controlling soil moisture, evapotranspiration (ET), boundary layer dynamics, and precipitation. In an earlier study we showed that a shallow water table can primarily exist in two types of hydrologic settings in North America: the humid river valleys and coastal regions in the east and the arid or semiarid intermountain valleys in the west. We also showed that the shallow water table in these settings can lead to significantly wetter soils than would exist without the presence of the water table. Here, we show that the water table-induced wetter soil directly maps into enhanced ET in the western setting, where soil water is a strong limiting factor of ET flux, but it is less likely to be the case in the more humid eastern setting where soil water is not limiting in general. We also ask whether any resulting enhanced ET will directly map into enhanced precipitation. Our hypothesis is that this can occur through two primary mechanisms: local, ET-driven enhancement of convective precipitation and enhanced regional or lateral moisture convergence caused by altered soil moisture fields, and hence altered ET, far from the region of concern. We find that, indeed, water table-induced higher ET in the arid west results in greater convective precipitation and that ET-precipitation coupling is primarily through local feedback pathways and precipitation recycling, with the main role of large-scale moisture convergence as an initiator of convection following dry periods. Transitioning to the more humid regions farther east, the greater atmospheric (relative to surface) control of precipitation progressively obscures any potential effects of the water table, and the effects of largescale moisture convergence tend to dominate.Citation: Anyah, R. O., C. P. Weaver, G. Miguez-Macho, Y. Fan, and A. Robock (2008), Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled land-atmosphere variability,
A fully coupled regional climate, 3D lake modeling system is used to investigate the physical mechanisms associated with the multiscale variability of the Lake Victoria basin climate. To examine the relative influence of different processes on the lake basin climate, a suite of model experiments were performed by smoothing topography around the lake basin, altering lake surface characteristics, and reducing or increasing the amount of large-scale moisture advected into the lake region through the four lateral boundaries of the model domain. Simulated monthly mean rainfall over the basin is comparable to the satellite (Tropical Rainfall Measuring Mission) estimates. Peaks between midnight and early morning hours characterize the simulated diurnal variability of rainfall over the four quadrants of the lake, consistent with satellite estimates, although the simulated peaks occur a little earlier. It is evident in the simulations with smoothed topography that the upslope/downslope flow generated by the mountains east of the lake and the land–lake breeze circulations play important roles in influencing the intensity, the location of lake/land breeze fronts, and the horizontal extent of the land–lake breeze circulation, as well as lake basin precipitation. When the lake surface is replaced with marsh (water hyacinth), the late night and early morning rainfall maximum located over the western sector of the lake is dramatically reduced. Our simulations also indicate that large-scale moisture transported via the prevailing easterly trades enhances lake basin precipitation significantly. This is in contrast to the notion advanced in some of the previous studies that Lake Victoria generates its own climate (rainfall) through precipitation–evaporation–reprecipitation recycling only.
Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model (GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study statistically downscales (to 1∕8°spatial resolution) and corrects the bias of daily maximum and minimum temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based on these downscaled data from multiple models, five extreme indices were analyzed for the future climate to quantify future changes of climate extremes. For a subset of models and indices, results based on raw and bias corrected model outputs for the present-day climate were compared with observations, which demonstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future climate, bias correction led to a higher level of agreements among the models in predicting the magnitude and capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical downscaling as an intermediate step does not lead to considerable differences in the results of statistical downscaling for the study domain.
We analyze the potential effect of global warming levels (GWLs) of 1.5 • C and 2 • C above pre-industrial levels (1861−1890) on mean temperature and precipitation as well as intra-seasonal precipitation extremes over the Greater Horn of Africa. We used a large, 25-member regional climate model ensemble from the Coordinated Regional Downscaling Experiment and show that, compared to the control period of 1971−2000, annual mean near-surface temperature is projected to increase by more than 1 • C and 1.5 • C over most parts of the Greater Horn of Africa, under GWLs of 1.5 • C and 2 • C respectively. The highest temperature increases are projected in the northern region, covering most parts of Sudan and northern parts of Ethiopia, and the lowest temperature increases are projected over the coastal belt of Tanzania. However, the projected mean surface temperature difference between 2 • C and 1. 5 • C GWLs is higher than 0.5 • C over nearly all land points, reaching 0.8 • C over Sudan and northern Ethiopia. This implies that the Greater Horn of Africa will warm faster than the global mean.While projected changes in precipitation are mostly uncertain across the Greater Horn of Africa, there is a substantial decrease over the central and northern parts of Ethiopia. Additionally, the length of dry and wet spells is projected to increase and decrease respectively. The combined effect of a reduction in rainfall and the changes in the wet and dry spells will likely impact negatively on the livelihoods of people within the coastal cities, lake regions, highlands as well as arid and semi-arid lands of Kenya, Tanzania, Somalia, Ethiopia and Sudan. The probable impacts of these changes on key sectors such as agriculture, water, energy and health sectors, will likely call for formulation of actionable policies geared towards adaptation and mitigation of the impacts of 1.5 • C and 2 • C warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.