Despite much research on large land deals for plantation agriculture in Africa, reliable data remain elusive, partly because of limited access to information and practical and methodological challenges. International debates are still shaped by misperceptions about how much land is being acquired, where, by whom, how and with what consequences. This article aims empirically to test some common perceptions through an analysis of findings from research conducted in three African countries: Ethiopia, Ghana, and Tanzania. The article presents new evidence on the scale, geography, drivers and features of land deals, relates findings to data from earlier research and international efforts to monitor land deals, and outlines possible ways forward for ongoing monitoring of the deals.
Cocoa agroforestry is perceived as potential adaptation strategy to sub-optimal or adverse environmental conditions such as drought. We tested this strategy over wet, dry and extremely dry periods comparing cocoa in full sun with agroforestry systems:shaded by (i) a leguminous tree species, Albizia ferruginea and (ii) Antiaris toxicaria, the most common shade tree species in the region. We monitored micro-climate, sap flux density, throughfall, and soil water content from November 2014 to March 2016 at the forest-savannah transition zone of Ghana with climate and drought events during the study period serving as proxy for projected future climatic conditions in marginal cocoa cultivation areas of West Africa. Combined transpiration of cocoa and shade trees was significantly higher than cocoa in full sun during wet and dry periods. During wet period, transpiration rate of cocoa plants shaded by A. ferruginea was significantly lower than cocoa under A. toxicaria and full sun. During the extreme drought of 2015/16, all cocoa plants under A. ferruginea died. Cocoa plants under A. toxicaria suffered 77% mortality and massive stress with significantly reduced sap flux density of 115 g cm À2 day À1 , whereas cocoa in full sun maintained higher sap flux density of 170 g cm À2 day À1 . Moreover, cocoa sap flux recovery after the extreme drought was significantly higher in full sun (163 g cm À2 day À1 ) than under A. toxicaria (37 g cm À2 day À1 ). Soil water content in full sun was higher than in shaded systems suggesting that cocoa mortality in the shaded systems was linked to strong competition for soil water. The present results have major implications for cocoa cultivation under climate change. Promoting shade cocoa agroforestry as drought resilient system especially under climate change needs to be carefully reconsidered as shade tree species such as the recommended leguminous A. ferruginea constitute major risk to cocoa functioning under extended severe drought. K E Y W O R D Sagroforestry, extreme heat and drought, sap flux density, shade tree species, soil water deficit, by 2020 (Carr & Lockwood, 2011;ICCO, 2016; World Cocoa Foundation, 2014 (Fountain & H€ utz-Adams, 2015;Lambert, 2014). Increasing income from cocoa is therefore a major pathway for smallholders to escape poverty in the region. However, farmers livelihoods are highly threatened by the vulnerability of their agricultural production systems to increases in the frequency and severity of extreme weather such as heat-waves and drought (Coumou & Rahmstorf, 2012;Sheffield & Wood, 2008;Sultan & Gaetani, 2016;Thornton, Ericksen, Herrero, & Challinor, 2014 Schroth, & Doffangui, 2015). Such response is currently not feasible anymore as forest land is limited and deforestation related to cocoa farming under strict control due to international commitments to prevent deforestation to reduce global warming and loss of biodiversity (Asante, Acheampong, Kyereh, & Kyereh, 2016;Damnyag et al., 2013;Ruf et al., 2015). Cocoa production therefore needs to beco...
Reduced climatic suitability due to climate change in cocoa growing regions of Ghana is expected in the coming decades. This threatens farmers’ livelihood and the cocoa sector. Climate change adaptation requires an improved understanding of existing cocoa production systems and farmers’ coping strategies. This study characterized current cocoa production, income diversification and shade tree management along a climate gradient within the cocoa belt of Ghana. The objectives were to 1) compare existing production and income diversification between dry, mid and wet climatic regions, and 2) identify shade trees in cocoa agroforestry systems and their distribution along the climatic gradient. Our results showed that current mean cocoa yield level of 288kg ha-1yr-1 in the dry region was significantly lower than in the mid and wet regions with mean yields of 712 and 849 kg ha-1 yr-1, respectively. In the dry region, farmers diversified their income sources with non-cocoa crops and off-farm activities while farmers at the mid and wet regions mainly depended on cocoa (over 80% of annual income). Two shade systems classified as medium and low shade cocoa agroforestry systems were identified across the studied regions. The medium shade system was more abundant in the dry region and associated to adaptation to marginal climatic conditions. The low shade system showed significantly higher yield in the wet region but no difference was observed between the mid and dry regions. This study highlights the need for optimum shade level recommendation to be climatic region specific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.