Drug efflux proteins are widespread amongst microorganisms, including pathogens. They can contribute to both natural insensitivity to antibiotics and to emerging antibiotic resistance and so are potential targets for the development of new antibacterial drugs. The design of such drugs would be greatly facilitated by knowledge of the structures of these transport proteins, which are poorly understood, because of the difficulties of obtaining crystals of quality. We describe a structural genomics approach for the amplified expression, purification and characterisation of prokaryotic drug efflux proteins of the 'Major Facilitator Superfamily' (MFS) of transport proteins from Helicobacter pylori, Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Bacillus subtilis, Brucella melitensis, Campylobacter jejuni, Neisseria meningitides and Streptomyces coelicolor. The H. pylori putative drug resistance protein, HP1092, and the S. aureus QacA proteins are used as detailed examples. This strategy is an important step towards reproducible production of transport proteins for the screening of drug binding and for optimisation of crystallisation conditions to enable subsequent structure determination.
A series of 46 natural nucleosides and analogues (mainly adenosine-based) were tested as inhibitors of [U-(14)C]uridine uptake by the concentrative, H(+)-linked nucleoside transport proteins NupC and NupG from Escherichia coli. The two evolutionarily unrelated transporters showed similar but distinct patterns of inhibition, revealing differing selectivities for the different nucleosides and their analogues. Binding of nucleosides to NupG required the presence of hydroxyl groups at each of the C-3' and C-5' positions of ribose, while binding to NupC required only the C-3' hydroxyl substituent. The greater importance of the ribose moiety for binding to NupG is consistent with the evolutionary relationship between this protein and the oligosaccharide: H(+) symporter (OHS) subfamily of the major facilitator superfamily (MFS) of transporters. For both proteins the natural alpha-configuration at C-3' and the natural beta-configuration at C-1' was mandatory for ligand binding. N-7 in the imidazole ring of adenosine and the amino group at C-6 were found not to be important for binding and both transporters showed flexibility for substitution at C-6/N(6); one or both of N-1 and N-3 were important for adenosine analogue binding to NupC but significantly less so for binding to NupG. From the different effects of 8-bromoadenosine on the two transporters it appears that adenosine selectively binds to NupC in an anti- rather than a syn-conformation, whereas NupG is less prescriptive. The pattern of inhibition of NupC by differing nucleoside analogues confirmed the functional relationship of the bacterial transporter to members of the human concentrative nucleoside transporter (CNT) family and reaffirmed the use of the bacterial protein as an experimental model for these physiologically and clinically important mammalian proteins. The specificity data for NupG have been used to develop a homology model of the protein's binding site, based on the X-ray crystallographic structure of the disaccharide transporter LacY from E. coli. We have also developed an efficient general protocol for the synthesis of adenosine and three of its analogues, which is illustrated by the synthesis of [1'-(13)C]adenosine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.