Neuronal nicotinic acetylcholine receptors (nAChRs) with putative alpha3 beta4-subunits have been implicated in the mediation of signaling in various systems, including ganglionic transmission peripherally and nicotine-evoked neurotransmitter release centrally. However, progress in the characterization of these receptors has been hampered by a lack of alpha3 beta4-selective ligands. In this report, we describe the purification and characterization of an alpha3 beta4 nAChR antagonist, alpha-conotoxin AuIB, from the venom of the "court cone," Conus aulicus. We also describe the total chemical synthesis of this and two related peptides that were also isolated from the venom. alpha-Conotoxin AuIB blocks alpha3 beta4 nAChRs expressed in Xenopus oocytes with an IC50 of 0.75 microM, a kon of 1.4 x 10(6) min-1 M-1, a koff of 0.48 min-1, and a Kd of 0.5 microM. Furthermore, alpha-conotoxin AuIB blocks the alpha3 beta4 receptor with >100-fold higher potency than other receptor subunit combinations, including alpha2 beta2, alpha2 beta4, alpha3 beta2, alpha4 beta2, alpha4 beta4, and alpha1 beta1 gamma delta. Thus, AuIB is a novel, selective probe for alpha3 beta4 nAChRs. AuIB (1-5 microM) blocks 20-35% of the nicotine-stimulated norepinephrine release from rat hippocampal synaptosomes, whereas nicotine-evoked dopamine release from striatal synaptosomes is not affected. Conversely, the alpha3 beta2-specific alpha-conotoxin MII (100 nM) blocks 33% of striatal dopamine release but not hippocampal norepinephrine release. This suggests that in the respective systems, alpha3 beta4-containing nAChRs mediate norepinephrine release, whereas alpha3 beta2-containing receptors mediate dopamine release.
We report the characterization of a new sodium channel blocker, mu-conotoxin PIIIA(mu-PIIIA). The peptide has been synthesized chemically and its disulfide bridging pattern determined. The structure of the new peptide is: [sequence: see text] where Z = pyroglutamate and O = 4-trans-hydroxyproline. We demonstrate that Arginine-14 (Arg14) is a key residue; substitution by alanine significantly decreases affinity and results in a toxin unable to block channel conductance completely. Thus, like all toxins that block at Site I, mu-PIIIA has a critical guanidinium group. This peptide is of exceptional interest because, unlike the previously characterized mu-conotoxin GIIIA (mu-GIIIA), it irreversibly blocks amphibian muscle Na channels, providing a useful tool for synaptic electrophysiology. Furthermore, the discovery of mu-PIIIA permits the resolution of tetrodotoxin-sensitive sodium channels into three categories: (1) sensitive to mu-PIIIA and mu-conotoxin GIIIA, (2) sensitive to mu-PIIIA but not to mu-GIIIA, and (3) resistant to mu-PIIIA and mu-GIIIA (examples in each category are skeletal muscle, rat brain Type II, and many mammalian CNS subtypes, respectively). Thus, mu-conotoxin PIIIA provides a key for further discriminating pharmacologically among different sodium channel subtypes.
Most of the >50,000 different pharmacologically active peptides in Conus venoms belong to a small number of gene superfamilies. In this work, the M-conotoxin superfamily is defined using both biochemical and molecular criteria. Novel excitatory peptides purified from the venoms of the molluscivorous species Conus textile and Conus marmoreus all have a characteristic pattern of Cys residues previously found in the mu-, kappaM-, and psi-conotoxins (CC-C-C-CC). The new peptides are smaller (12-19 amino acids) than the mu-, kappaM-, and psi-conotoxins (22-24 amino acids). One peptide, mr3a, was chemically synthesized in a biologically active form. Analysis of the disulfide bridges of a natural peptide tx3c from C. textile and synthetic peptide mr3a from C. marmoreus showed a novel pattern of disulfide connectivity, different from that previously established for the mu- and psi-conotoxins. Thus, these peptides belong to a new group of structurally and pharmacologically distinct conotoxins that are particularly prominent in the venoms of mollusc-hunting Conus species. Analysis of cDNA clones encoding the novel peptides as well as those encoding mu-, kappaM-, and psi-conotoxins revealed highly conserved amino acid residues in the precursor sequences; this conservation in both amino acid sequence and in the Cys pattern defines a gene superfamily, designated the M-conotoxin superfamily. The peptides characterized can be provisionally assigned to four distinct groups within the M-superfamily based on sequence similarity within and divergence between each group. A notable feature of the superfamily is that two distinct structural frameworks have been generated by changing the disulfide connectivity on an otherwise conserved Cys pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.