Impaired mitochondrial function and disrupted proteostasis contribute to musculoskeletal dysfunction. However, few interventions simultaneously target these two drivers to prevent musculoskeletal decline. Nuclear factor erythroid 2‐related factor 2 (Nrf2) activates a transcriptional programme promoting cytoprotection, metabolism, and proteostasis. We hypothesized daily treatment with a purported Nrf2 activator, PB125, in Hartley guinea pigs, a model of musculoskeletal decline, would attenuate the progression of skeletal muscle mitochondrial dysfunction and impaired proteostasis and preserve musculoskeletal function. We treated 2‐ and 5‐month‐old male and female Hartley guinea pigs for 3 and 10 months, respectively, with the phytochemical compound PB125. Longitudinal assessments of voluntary mobility were measured using Any‐MazeTM open‐field enclosure monitoring. Cumulative skeletal muscle protein synthesis rates were measured using deuterium oxide over the final 30 days of treatment. Mitochondrial oxygen consumption in soleus muscles was measured using high resolution respirometry. In both sexes, PB125 (1) increased electron transfer system capacity; (2) attenuated the disease/age‐related decline in coupled and uncoupled mitochondrial respiration; and (3) attenuated declines in protein synthesis in the myofibrillar, mitochondrial and cytosolic subfractions of the soleus. These effects were not associated with statistically significant prolonged maintenance of voluntary mobility in guinea pigs. Collectively, treatment with PB125 contributed to maintenance of skeletal muscle mitochondrial respiration and proteostasis in a pre‐clinical model of musculoskeletal decline. Further investigation is necessary to determine if these documented effects of PB125 are also accompanied by slowed progression of other aspects of musculoskeletal dysfunction. Key points Aside from exercise, there are no effective interventions for musculoskeletal decline, which begins in the fifth decade of life and contributes to disability and cardiometabolic diseases. Targeting both mitochondrial dysfunction and impaired protein homeostasis (proteostasis), which contribute to the age and disease process, may mitigate the progressive decline in overall musculoskeletal function (e.g. gait, strength). A potential intervention to target disease drivers is to stimulate nuclear factor erythroid 2‐related factor 2 (Nrf2) activation, which leads to the transcription of genes responsible for redox homeostasis, proteome maintenance and mitochondrial energetics. Here, we tested a purported phytochemical Nrf2 activator, PB125, to improve mitochondrial function and proteostasis in male and female Hartley guinea pigs, which are a model for musculoskeletal ageing. PB125 improved mitochondrial respiration and attenuated disease‐ and age‐related declines in skeletal muscle protein synthesis, a component of proteostasis, in both male and female Hartley guinea pigs.
Objective: Faced with the frustration of chronic discomfort and restricted mobility due to osteoarthritis (OA), many individuals have turned to acupuncture for relief. However, the efficacy of acupuncture for OA is uncertain, as much of the evidence is inconclusive. The purpose of this study was to evaluate electroacupuncture (EA) in a rodent model of OA such that conclusions regarding its effectiveness for symptom or disease modification could be drawn. Methods: Ten 12-month-old male Hartley guinea pigs—which characteristically have moderate to advanced OA at this age—were randomly assigned to receive EA for knee OA (n = 5) or anesthesia only (control group, n = 5). Treatments were performed three times weekly for 3 weeks, followed by euthanasia 2 weeks later. Gait analysis and enclosure monitoring were performed weekly to evaluate changes in movement. Serum was collected for inflammatory biomarker testing. Knee joints were collected for histology and gene expression. Results: Animals receiving EA had significantly greater changes in movement parameters compared to those receiving anesthesia only. There was a tendency toward decreased serum protein concentrations of complement component 3 (C3) in the EA group compared to the control group. Structural and antioxidant gene transcripts in articular cartilage were increased by EA. There was no significant difference in total joint histology scores between groups. Conclusion: This study provides evidence that EA has a positive effect on symptom, but not disease, modification in a rodent model of OA. Further investigations into mechanistic pathways that may explain the efficacy of EA in this animal model are needed.
Osteoarthritis (OA) is a leading cause of morbidity among aging populations, yet symptom and/or disease-modification remains elusive. Adipose-derived mesenchymal stromal cells (adMSCs) have demonstrated immunomodulatory and anti-inflammatory properties that may alleviate clinical signs and interrupt disease onset and progression.
Musculoskeletal dysfunction is an age-related syndrome associated with impaired mitochondrial function and proteostasis. However, few interventions have tested targeting two drivers of musculoskeletal decline. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that stimulates transcription of cytoprotective genes and improves mitochondrial function. We hypothesized daily treatment with a Nrf2 activator in Hartley guinea pigs, a model of age-related musculoskeletal dysfunction, attenuates the progression of skeletal muscle mitochondrial dysfunction and impaired proteostasis, preserving musculoskeletal function. We treated 2-month- and 5-month-old male and female Hartley guinea pigs for 3 and 10 months, respectively, with the phytochemical Nrf2 activator PB125 (Nrf2a). Longitudinal assessments of voluntary mobility were measured using Any-Maze™ open-field enclosure monitoring. Cumulative skeletal muscle protein synthesis rates were measured using deuterium oxide over the final 30 days of treatment. Mitochondrial oxygen consumption in permeabilized soleus muscles was measured using ex vivo high resolution respirometry. In both sexes, Nrf2a 1) increased electron transfer system capacity; 2) attenuated the disease/age-related decline in coupled and uncoupled mitochondrial respiration; and 3) attenuated declines in protein synthesis in the myofibrillar, mitochondrial, and cytosolic subfractions of the soleus. These improvements were not associated with statistically significant prolonged maintenance of voluntary mobility in guinea pigs. Collectively, these results demonstrate that treatment with an oral Nrf2 activator contributes to maintenance of skeletal muscle mitochondrial function and proteostasis in a pre-clinical model of musculoskeletal decline. Further investigation is necessary to determine if these improvements are also accompanied by slowed progression of other aspects of musculoskeletal decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.