Although p53–mediated cell–cycle arrest, senescence and apoptosis serve as critical barriers to cancer development, emerging evidence suggests that the metabolic activities of p53 are also important. Here we show that p53 inhibits cystine uptake and sensitizes cells to ferroptosis, a non–apoptotic form of cell death, by repressing expression of SLC7A11, a key component of the cystine/glutamate antiporter. Notably, p533KR, an acetylation–defective mutant that fails to induce cell–cycle arrest, senescence and apoptosis, fully retains the ability to regulate SLC7A11 expression and induce ferroptosis upon reactive oxygen species (ROS)–induced stress. Analysis of mutant mice shows that these non–canonical p53 activities contribute to embryonic development and the lethality associated with loss of Mdm2. Moreover, SLC7A11 is highly expressed in human tumours, and its overexpression inhibits ROS–induced ferroptosis and abrogates p533KR–mediated tumour growth suppression in xenograft models. Our findings uncover a new mode of tumour suppression based on p53 regulation of cystine metabolism, ROS responses and ferroptosis.
In the S and G2 phases of the cell cycle, DNA double-strand breaks (DSBs) are processed into single-stranded DNA, triggering ATR-dependent checkpoint signaling and DSB repair by homologous recombination (HR). Previous work has implicated the MRE11 complex in such DSB processing events. Here, we show that the human CtIP protein confers resistance to DSB-inducing agents and is recruited to DSBs exclusively in S/G2. Moreover, we reveal that CtIP is required for DSB resection, and thereby for recruitment of RPA and ATR to DSBs and ensuing ATR activation. Furthermore, we establish that CtIP physically and functionally interacts with the MRE11 complex, and that both CtIP and MRE11 are required for efficient HR. Finally, we reveal that CtIP displays sequence homology with Sae2, which is involved in MRE11-dependent DSB processing in yeast. These findings establish evolutionarily conserved roles for CtIP-like proteins in controlling DSB resection, checkpoint signaling and HR.DSBs are highly cytotoxic lesions induced by ionizing radiation and certain anti-cancer drugs. They also arise when replication forks encounter other lesions and are generated as intermediates during meiotic recombination1. Cells possess two main DSB repair mechanisms: non-homologous end-joining (NHEJ) and homologous recombination (HR). While NHEJ predominates in G0/G1 and is error-prone, HR is restricted to S and G2, when sister chromatids allow faithful repair2-4. HR is initiated by resection of DSBs to generate single-stranded DNA (ssDNA) that binds RPA. A ssDNA-RAD51 nucleoprotein filament then forms to initiate strand invasion. ssDNA-RPA also recruits the protein kinase ATR, triggering ATR-dependent checkpoint signaling by the protein kinase Chk15. As DSB resection is largely restricted to S and G2, both HR and checkpoint signaling are subject to cell-cycle control6-8.A factor implicated in DSB resection is the MRE11-RAD50-NBS1 (MRN) complex, which binds DNA ends, possesses exo-and endo-nuclease activities and functions in triggeringCorrespondence and requests for materials should be addressed to: Stephen P. Jackson 1 , Email: s.jackson@gurdon.cam.ac.uk, Telephone: +44 (0)1223 334088, Fax: +44 (0)1223 334089. Author contributions S.F and R.B generated CtIP cDNA, CtIP antibodies and recombinant CtIP protein. C.L., J.L., M.M and J.B generated the cell lines with GFP-tagged proteins, conceived, performed and evaluated the real-time imaging experiments, and performed the HR measurements. All other experiments were conceived by A.A.S and S.P.J, and were performed by A.A.S with the help of J.C. A.A.S and S.P.J wrote the paper. All authors discussed the results and commented on the manuscript. Author informationThe authors declare no competing financial interest. Europe PMC Funders Group CtIP affects cellular responses to DSBsTo investigate CtIP function, we examined how its depletion affected clonogenic survival of human U2OS cells following their treatment with DNA-damaging agents. To circumvent possible effects arising from CtIP's involveme...
The complete (172,282 base pairs) nucleotide sequence of the B95-8 strain of Epstein-Barr virus has been established using the dideoxynucleotide/M13 sequencing procedure. Many RNA polymerase II promoters have been mapped and the mRNAs from these promoters have been assigned to the latent or early/late productive virus cycles. Likely protein-coding regions have been identified and three of these have been shown to encode a ribonucleotide reductase, a DNA polymerase and two surface glycoproteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.