FIXa is a serine protease enzyme involved in the intrinsic pathway of the coagulation cascade. The upstream intervention of the coagulation cascade in selectively inhibiting FIXa would leave hemostasis intact via the extrinsic pathway, leading to an optimum combination of efficacy and safety with low incidence of bleeding. We have identified 2-amindinobenzothiophene template as a lead scaffold for FIXa inhibiton based on its homology with urokinase plasminogen activator (uPA). Subsequent SAR work on the template revealed a number of highly potent FIXa inhibitors, though with moderate selectivity against FXa. X-ray study with one of the analogues demonstrated active site binding interaction with the induced opening of the S1 beta pocket and a secondary binding at the S2-S4 sites, which is in direct contrast with the previous finding.
On the basis of our understanding on the binding interactions of the benzothiophene template within the FIXa active site by X-ray crystallography and molecular modeling studies, we developed our SAR strategy by targeting the 4-position of the template to access the S1 beta and S2-S4 sites. A number of highly selective and potent factor Xa (FXa) and FIXa inhibitors were identified by simple switch of functional groups with conformational changes toward the S2-S4 sites.
Using the crystal structure of an inhibitor complexed with the serine protease thrombin (PDB code ) and the functional group definitions contained within the Catalyst software, a representation of the enzyme's active site was produced (structure-based pharmacophore model). A training set of 16 homologous non-peptide inhibitors whose conformations had been generated in continuum solvent (MacroModel) and clustered into conformational families (XCluster) was regressed against this pharmacophore so as to obtain a 3D-QSAR model. To test the robustness of the resulting QSAR model, the synthesis of a series of non-peptide thrombin inhibitors based on arylsuphonyl derivatives of an aminophenol ring linked to a pyridyl-based S1 binding group was undertaken. These compounds served as a test set (20-24). The crystal structure for the novel symmetrical disulfonyl compound 24, in complex with thrombin, has been solved. Its calculated binding mode is in general agreement with the crystallographically observed one, and the predicted K(i) value is in close accord with the experimental value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.