A closed-loop, autonomous molecular discovery platform driven by integrated machine learning tools was developed to accelerate the design of molecules with desired properties. Two case studies are demonstrated on dye-like molecules, targeting absorption wavelength, lipophilicity, and photo-oxidative stability. In the first, the platform experimentally realized 312 unreported molecules across three automatic iterations of molecular design-make-test-analyze cycles while exploring the structure–function space of four rarely reported scaffolds. In each iteration, the property-prediction models which guided the exploration learned the structure–property space of diverse inexpensive scaffold derivatives realized through using multi-step syntheses. Conversely, the second study exploited property models trained on a chemical space with pre-existing examples to discover 6 top-performing molecules within the structure-property space. By closing the molecular discovery cycle of prediction, synthesis, measurement, and model retraining, the platform demonstrates the potential for integrated platforms to automatically understand a local chemical space and discover functional molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.