A fastidious, slowly growing, strictly aerobic, gram-negative bacterium was isolated from a culture of blood from a 25-year-old man with common variable immunodeficiency. The man had been admitted to hospital with febrile progressive cerebellar ataxia. The use of standard phenotypic schemes did not lead to identification, but sequence analysis demonstrated that the 16S rRNA gene of the isolate was most similar to those of the environmental bacteriaDuganella zoogloeoides (formerly Zoogloea ramigera 115) and Telluria mixta. Further characterization of the bacterium by biochemical analysis, electron microscopy, G+C content estimation, and fatty acid analysis demonstrated significant differences between the bacterium and D. zoogloeoides and Telluria species; thus, we propose it as a new taxon with the name Massilia timonae gen. nov., sp. nov.
The 16s rRNA-encoding gene sequences from strains of the family Legionellaceae, Sarcobium lyticum, and Coxiella burnetii were determined. Phylogenetic relationships revealed that all Legionella spp. were members of a coherent monophyletic family. The blue-white autofluorescent species formed a defined cluster bounded by Legionella bozemanii and Legionella tucsonensis. The strains of Legionella pneumophila subsp. pneumophila and Legionella pneumophila subsp. fraseri shared 99.2% sequence identity. A legionella-like amoeba1 pathogen (LLAP-3) showed 99.4% sequence identity to the obligate intracellular bacterial parasite Sarcobium lyticum. A proposal is made for the transfer of Sarcobium lyticum from the genus Sarcobium to the genus Legionella as Legionella lytica comb. nov. On the basis of serology and phenetic and phylogenetic comparisons, the taxa Legionella erythra and Legionella rubrilucens may be regarded as subspecies.
Tick‐borne pathogens (TBPs) constitute an emerging public health concern favoured by multidimensional global changes. Amongst these, increase and spread of wild boar (Sus scrofa) populations are of special concern since this species can act as a reservoir of zoonotic pathogens and promote tick abundance. Thus, we aimed to make a first assessment of the risk by TBPs resulting from wild boar and ticks in the vicinity of a highly populated area. Between 2014 and 2016, we collected spleen samples and 2256 ticks from 261 wild boars (out of 438 inspected) in the metropolitan area of Barcelona (MAB; northeast Spain). We morphologically identified four tick species: Hyalomma lusitanicum (infestation prevalence: 33.6%), Dermacentor marginatus (26.9%), Rhipicephalus sanguineus sensu lato (18.9%) and R. bursa (0.2%). Ticks were pooled according to species and individual host. A total of 180 tick pools and 167 spleen samples were screened by real‐time PCR and/or reverse line blot hybridization assay for Ehrlichia sp., Anaplasma sp., Babesia sp., Rickettsia sp., Borrelia burgdorferi sensu lato and Coxiella burnetii. Seventy‐two out of the 180 tick pools were positive to Rickettsia spp. (minimum prevalence of 8.7%), including Rickettsia massiliae, R. slovaca and R. raoultii. We did not detect Rickettsia spp. in wild boar spleens nor other TBPs in ticks or wild boars. Since the ticks identified can bite humans, and the recorded spotted fever group (SFG) rickettsiae are zoonotic pathogens, there is a risk of SFG rickettsiae transmission for MAB inhabitants. Our results suggest a broader distribution of H. lusitanicum, competent vector for the Crimean‐Congo haemorrhagic fever virus than previously known. Wild boar is not a Rickettsia spp. reservoir according to the spleen negative results. However, its abundance could favour tick life cycle and abundance, and its proximity to humans could promote the infection risk by Rickettsia spp.
Interactions between hosts and their resident microbial communities are a fundamental component of fitness for both agents. Though recent research has highlighted the importance of interactions between animals and their bacterial communities, comparative evidence for fungi is lacking, especially in natural populations. Using data from 49 species, we present novel evidence of strong covariation between fungal and bacterial communities across the host phylogeny, indicative of recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate marked variation across host taxonomy in patterns of covariation between bacterial and fungal abundances. Host phylogeny drives differences in the overall richness of bacterial and fungal communities, but the effect of diet on richness was only evident in the mammalian gut microbiome. Sample type, tissue storage and DNA extraction method also affected bacterial and fungal community composition, and future studies would benefit from standardized approaches to sample processing. Collectively these data indicate fungal microbiomes may play a key role in host fitness and suggest an urgent need to study multiple agents of the animal microbiome to accurately determine the strength and ecological significance of host–microbe interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.