Interest in candidate gene and candidate geneby-environment interaction hypotheses regarding major depressive disorder remains strong despite controversy surrounding the validity of previous findings. In response to this controversy, the present investigation empirically identified 18 candidate genes for depression that have been studied 10 or more times and examined evidence for their relevance to depression phenotypes.Methods: Utilizing data from large population-based and case-control samples (Ns ranging from 62,138 to 443,264 across subsamples), the authors conducted a series of preregistered analyses examining candidate gene polymorphism main effects, polymorphism-by-environment interactions, and gene-level effects across a number of operational definitions of depression (e.g., lifetime diagnosis, current severity, episode recurrence) and environmental moderators (e.g., sexual or physical abuse during childhood, socioeconomic adversity).Results: No clear evidence was found for any candidate gene polymorphism associations with depression phenotypes or any polymorphism-by-environment moderator effects. As a set, depression candidate genes were no more associated with depression phenotypes than noncandidate genes. The authors demonstrate that phenotypic measurement error is unlikely to account for these null findings. Conclusions:The study results do not support previous depression candidate gene findings, in which large genetic effects are frequently reported in samples orders of magnitude smaller than those examined here. Instead, the results suggest that early hypotheses about depression candidate genes were incorrect and that the large number of associations reported in the depression candidate gene literature are likely to be false positives.
Background A recent analysis of 25 historical candidate gene polymorphisms for schizophrenia in the largest genome-wide association study (GWAS) conducted to date suggested that these commonly studied variants were no more associated with the disorder than would be expected by chance. However, the same study identified other variants within those candidate genes that demonstrated genome-wide significant associations with schizophrenia. As such, it is possible that variants within historic schizophrenia candidate genes are associated with schizophrenia at levels above those expected by chance, even if the most studied specific polymorphisms are not. Methods The present study used association statistics from the largest schizophrenia GWAS conducted to date as input to a gene set analysis to investigate whether variants within schizophrenia candidate genes are enriched for association with schizophrenia. Results As a group, variants in the most studied candidate genes were no more associated with schizophrenia than variants in control sets of non-candidate genes. While a small subset of candidate genes did appear to be significantly associated with schizophrenia, these genes were not particularly noteworthy given the large number of more strongly associated non-candidate genes. Conclusions The history of schizophrenia research should serve as a cautionary tale to candidate gene investigators examining other phenotypes: our findings indicate that the most investigated candidate gene hypotheses of schizophrenia are not well supported by GWAS, and it is likely that this will be the case for other complex traits as well.
The observation of genetic correlations between disparate human traits has been interpreted as evidence of widespread pleiotropy. Here, we introduce cross-trait assortative mating (xAM) as an alternative explanation. We observe that xAM affects many phenotypes and that phenotypic cross-mate correlation estimates are strongly associated with genetic correlation estimates ( R 2 = 74%). We demonstrate that existing xAM plausibly accounts for substantial fractions of genetic correlation estimates and that previously reported genetic correlation estimates between some pairs of psychiatric disorders are congruent with xAM alone. Finally, we provide evidence for a history of xAM at the genetic level using cross-trait even/odd chromosome polygenic score correlations. Together, our results demonstrate that previous reports have likely overestimated the true genetic similarity between many phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.