PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2×8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3k×10.3k CCDs with 9-μm pixels and peak quantum efficiencies of 94-96 % record a total of 92échelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 92-96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15 % at 650 nm, and still 11 % and 10 % at 390 nm and 900 nm, respectively. In combination with the 110 m 2 light-collecting capability of the LBT, we expect a limiting magnitude of ≈ 20th mag in V in the low-resolution mode. The R = 120 000 mode can also be used with two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with the 7-slice image slicer and a 100-μm fibre through a projected sky aperture of 0.74 , comparable to the median seeing of the LBT site. The 43 000-mode with 12-pixel sampling per resolution element is our bad seeing or faint-object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry-Pérotétalon for ultra-precise radial velocities. CCD-image processing is performed with the dedicated data-reduction and analysis package PEPSI-S4S. Its full error propagation through all image-processing steps allows an adaptive selection of parameters by using statistical inferences and robust estimators. A solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we present the basic instrument design, its realization, and its characteristics. Some pre-commissioning first-light spectra shall demonstrate the basic functionality.
No abstract
This paper reports on two new advancements in CCD technology. The first area of development has produced a special purpose CCD designed for ultra low-signal level imaging and spectroscopy applications that require subelectron read noise floors. A nondestructive output circuit operating near its 1/f noise regime is clocked in a special manner to read a single pixel multiple times. Off-chip electronics average the multiple values, reducing the random noise by the square-root of the number of samples taken. Noise floors below 0.5 electrons rms are reported. The second development involves the design and performance of a high resolution imager of 4096x 4096 pixels, the largest CCD manufactured in terms of pixel count. The device utilizes a 7.5-micron pixel fabricated with three-level poly-silicon to achieve high yield.
A charge coupled device designed for celestial spectroscopy has achieved readout noise as low as 0.6 electrons rms. A non-destructive output circuit was operated in a special manner to read a single pixel multiple times. Offchip electronics averaged the multiple values, reducing the random noise by the square root of the number of readouts. Charge capacity was measured to be 500,000 electrons. The device format is 1600 pixels horizontal by 64 pixels vertical. Pixel size is 28 microns square. Two output circuits are located at opposite ends of the 1600 bit CCD register. The device was thinned and operated backside illuminated at -1 10 degrees C. Output circuit design, layout, and operation are described. Presented data includes the photon transfer curve, noise histograms, and bar-target images down to 3 electrons signal. The test electronics are described, and future improvements are discussed..
We describe the design of an ultra-large-format, 8192 x 8192 pixel CCD mosaic imager under construction for the Mauna Kea Observatory. The mosaic wifi be built from a 4 x 2 array of 3-edge-buttable 2048 x 4096 15 pm pixel CCDs fabricated by Loral Fairchild. We outline the scientific justification for such a mosaic and the technical details of the 3-edge-buttable 2048 x 4096 CCD design. We also present our strategy for imager packaging and subsequent mosaic construction which wifi result in a mosaic with individual elements that can easily be installed and removed.This particluar CCD mosaic is intended for two existing MKO telescopes: the UH 2.2 m and the CFHT 3.6 m. In either configuration, the imager wifi offer an enormous field of view with excellent spatial
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.