In vibratory finishing the material removal rate is influenced by the contact forces between work piece and media. In this paper a measurement system is presented which is capable of measuring the contact forces between work piece and media in unguided vibratory finishing. The unique feature of the measurement system is its completely wireless construction. The measurement results are not influenced by wires of the force sensor system including the electrical power supply and the data logging. By means of this measurement system, contact forces can be measured in unguided vibratory finishing processes for the first time. Furthermore, the influence of media size and adjustment of the unbalance motor like revolution speed, phase angle and mass distribution between the upper and the lower eccentric weight was investigated.
The relative velocity between workpiece and media has a strong effect on the material removal rate in vibratory finishing. Due to this fact, a measurement system in the form of a camera-integrated workpiece is presented in this paper, which is capable of measuring the relative velocity between the workpiece and the media in an unguided vibratory finishing process. The unique feature of this measurement system is the completely wireless construction, so that the results are not influenced by wires for the data transfers and the electrical power supply of the light-emitting diodes of the camera system. Furthermore, the influence of the media size and adjustments of the imbalance engine like rotational speed, mass distribution between the upper and the lower imbalance weights, and offset angle between the imbalance weights were investigated. The evaluation of the results has shown that the media size and the rotational speed of the imbalance engine are the major influence factors on the relative velocity between workpiece and media.
Polycrystalline diamond (PCD) grinding takes an important role in the field of tool manufacture. Regardless, there is still lack of process knowledge about the occurring material removal mechanisms in PCD grinding. In order to get a better understanding of the process characteristics, the surface integrity zone of PCD inserts has been analyzed in detail after grinding for the first time. The drawn conclusion questions solely ductile or brittle behavior as removal mechanisms. Both thermal and mechanical process loads during the grinding process lead to thermophysical and chemical effects on a micro- and mesoscopic-scale and might thus have a significant impact on the material removal mechanism.
Beim Vibrationsgleitschleifen wird der Werkstoffabtrag maßgeblich durch die vorherrschenden Kontaktkräfte zwischen dem Werkstück und den Schleifkörpern bestimmt. Dieser Fachartikel stellt ein Messsystem vor, mit dem die messtechnische Erfassung der Kontaktkräfte beim ungeführten Vibrationsgleitschleifen möglich ist. Ein Alleinstellungsmerkmal ist dabei die vollständig kabellose Ausführung des Messsystems. Somit wurden die Messergebnisse nicht durch Kabel beeinflusst, die üblicherweise für die Energieversorgung und Datenübertragung notwendig sind. Mithilfe dieses Messsystems wurde der Einfluss folgender Prozesseingangsgrößen systematisch untersucht: Schleifkörpergröße, Unwuchtmotordrehzahl, Versatzwinkel der Unwuchtgewichte sowie die Masse des unteren und oberen Unwuchtgewichts auf die Kontaktkräfte. In vibratory finishing the material removal is influenced by the contact forces between work piece and media. In this paper a measurement system is presented which is able to measure contact forces between work piece and media in unguided vibratory finishing. The unique feature of the measurement system is its completely wireless construction so that the measurement results are not influenced by wires of the force sensor system including the electrical power supply and the data logging. By means of this measurement system, contact forces can be measured in unguided vibratory finishing processes for the first time. Furthermore, the influence of media size and adjustment of the unbalance motor like revolution speed, phase angle and mass distribution between the upper and the lower eccentric weight on the contact forces was investigated.
In this paper, the removal mechanisms in grinding polycrystalline diamond (PCD) with vitrified bonded diamond grinding wheels are discussed fundamentally. After a short review about the history of diamond machining, the author summarizes the state of the art in PCD grinding and thus deduces gaps and a deficit in research. In order to analyze occurring removal mechanisms in PCD grinding, tool grinding tests were carried out. For the experimental investigations a conventional tool grinding machine has been modified in order to withstand process loads. Subsequent to the tests, the surface integrity of ground PCD inserts has been analyzed in detail for the first time. Therefore, focused ion beam (FIB) preparation, which has minimum invasive influence on the sub surface, was applied in order to get an insight into the substrate. Gained lamellae have been analyzed with transmission electron microscopy (TEM). The drawn conclusion questions solely ductile or brittle behavior as removal mechanisms. With reference to simulation researches about polishing diamond with diamond, alternative removal mechanisms should be regarded as well. Both, thermal and mechanical process loads might lead to thermo-physical and chemical effects on a microscopic scale which influences the material removal even in grinding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.