A high-resolution pollen record from western Greece shows that the amplitude of millennial-scale oscillations in tree abundance during the last glacial period was subdued, with temperate tree populations surviving throughout the interval. This provides evidence for the existence of an area of relative ecological stability, reflecting the influence of continued moisture availability and varied topography. Long-term buffering of populations from climatic extremes, together with genetic isolation at such refugial sites, may have allowed lineage divergence to proceed through the Quaternary. Such ecologically stable areas may be critical not only for the long-term survival of species, but also for the emergence of new ones.
The dispersal of early humans from Africa by 1.75 Myr ago led to a marked expansion of their range, from the island of Flores in the east to the Iberian peninsula in the west. This range encompassed tropical forest, savannah and Mediterranean habitats, but has hitherto not been demonstrated beyond 45 degrees N. Until recently, early colonization in Europe was thought to be confined to the area south of the Pyrenees and Alps. However, evidence from Pakefield (Suffolk, UK) at approximately 0.7 Myr indicated that humans occupied northern European latitudes when a Mediterranean-type climate prevailed. This provided the basis for an 'ebb and flow' model, where human populations were thought to survive in southern refugia during cold stages, only expanding northwards during fully temperate climates. Here we present new evidence from Happisburgh (Norfolk, UK) demonstrating that Early Pleistocene hominins were present in northern Europe >0.78 Myr ago when they were able to survive at the southern edge of the boreal zone. This has significant implications for our understanding of early human behaviour, adaptation and survival, as well as the tempo and mode of colonization after their first dispersal out of Africa.
The colonization of Eurasia by early humans is a key event after their spread out of Africa, but the nature, timing and ecological context of the earliest human occupation of northwest Europe is uncertain and has been the subject of intense debate. The southern Caucasus was occupied about 1.8 million years (Myr) ago, whereas human remains from Atapuerca-TD6, Spain (more than 780 kyr ago) and Ceprano, Italy (about 800 kyr ago) show that early Homo had dispersed to the Mediterranean hinterland before the Brunhes-Matuyama magnetic polarity reversal (780 kyr ago). Until now, the earliest uncontested artefacts from northern Europe were much younger, suggesting that humans were unable to colonize northern latitudes until about 500 kyr ago. Here we report flint artefacts from the Cromer Forest-bed Formation at Pakefield (52 degrees N), Suffolk, UK, from an interglacial sequence yielding a diverse range of plant and animal fossils. Event and lithostratigraphy, palaeomagnetism, amino acid geochronology and biostratigraphy indicate that the artefacts date to the early part of the Brunhes Chron (about 700 kyr ago) and thus represent the earliest unequivocal evidence for human presence north of the Alps.
Marine and ice-core records show that the Earth has experienced a succession of glacials and interglacials during the Quaternary (last ~2.6 million years), although it is often difficult to correlate fragmentary terrestrial records with specific cycles. Aminostratigraphy is a method potentially able to link terrestrial sequences to the marine isotope stages (MIS) of the deep-sea record 1,2 . We have used new methods of extraction and analysis of amino acids, preserved within the calcitic opercula of the freshwater gastropod Bithynia, to provide the most comprehensive dataset for the British Pleistocene based on a single dating technique. A total of 470 opercula from 74 sites spanning the entire Quaternary are ranked in order of relative age based on the extent of protein degradation, using aspartic acid (Asx), glutamic acid (Glx), serine (Ser), alanine (Ala) and valine (Val). This new aminostratigraphy is consistent with the stratigraphical relations of stratotypes, sites with independent geochronology, biostratigraphy and terrace stratigraphy [3][4][5][6] . The method corroborates the existence of four interglacial stages between the Anglian (MIS 12) and the Holocene in the terrestrial succession. It establishes human occupation of Britain in most interglacial stages after MIS 15, but supports the notion of human absence during the Last Interglacial (MIS 5e) 7 . Suspicions that the treeless 'optimum of the Upton Warren interstadial' at Isleworth pre-dates MIS 3 are confirmed. This new aminostratigraphy provides a robust framework against which climatic, biostratigraphical and archaeological models can be tested.Despite the importance of the terrestrial record for climate models, the difficulties of assigning specific sedimentary sequences to individual climate cycles restricts the use of these data in climate modelling. The British Quaternary is exceptional for the number of who used the extent of racemization in the amino acid L-isoleucine (to its diastereomer D-alloisoleucine, yielding an A/I value) in non-marine mollusc shells to build an aminostratigraphy of terrestrial sequences that could be linked to the marine oxygen isotope stratigraphy. Following debate concerning certain correlations, we developed a revised method of extraction and analysis 9 . Shells of freshwater gastropods (Bithynia and Valvata) from many of the original sites 10 have been re-analysed, confirming much of the A/I stratigraphy. However, it emerged that within-site and within-stage variability increases in shells from older sites. This variability probably results from diagenetic alteration of the biomineral carbonate from aragonite to the more thermodynamically stable calcite 10,11 .Our new method has five significant revisions, three of which reduced within-site variability. First, inter-species variation was minimised by analysing only a single genus of freshwater gastropod (Bithynia). Second, variability in amino acid concentration and D/L values was significantly lowered when samples were crushed to ≤ 500 μm and exposed ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.