Late blight (LB) disease causes significant annual losses in tomato production. Early identification of this disease is crucial in halting its severity. This study aimed to leverage the strength of Convolutional Neural Networks (CNNs) in automated prediction of tomato LB. Through transfer learning, the MobileNetV3 model was trained on high-quality, well-labeled images from Kaggle datasets. The trained model was tested on different images of healthy and infected leaves taken from different real-world locations in Mbeya, Arusha, and Morogoro. Test results demonstrated the model's success in identifying LB disease, with an accuracy of 81% and a precision of 76%. The trained model has the potential to be integrated into an offline mobile app for real-time use, improving the efficiency and effectiveness of LB disease detection in tomato production. Similar methods could also be applied to detect other tomato infections.
Keywords: MobileNets; convolutional neural networks; plant diseases detection; image classification; transfer learning
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.