Background: Noninvasive transcranial electrical stimulation (tES) research has been plagued with inconsistent effects. Recent work has suggested neuroanatomical and neurophysiological variability may alter tES efficacy. However, direct evidence is limited. Objective: We have previously replicated effects of transcranial alternating current stimulation (tACS) on improving multitasking ability in young adults. Here, we attempt to assess whether these stimulation parameters have comparable effects in older adults (aged 60e80 years), which is a population known to have greater variability in neuroanatomy and neurophysiology. It is hypothesized that this variability in neuroanatomy and neurophysiology will be predictive of tACS efficacy. Methods: We conducted a pre-registered study where tACS was applied above the prefrontal cortex (between electrodes F3-F4) while participants were engaged in multitasking. Participants were randomized to receive either 6-Hz (theta) tACS for 26.67 min daily for three days (80 min total; Long Exposure Theta group), 6-Hz tACS for 5.33 min daily (16-min total; Short Exposure Theta group), or 1-Hz tACS for 26.67 min (80 min total; Control group). To account for neuroanatomy, magnetic resonance imaging data was used to form individualized models of the tACS-induced electric field (EF) within the brain. To account for neurophysiology, electroencephalography data was used to identify individual peak theta frequency. Results: Results indicated that only in the Long Theta group, performance change was correlated with modeled EF and peak theta frequency. Together, modeled EF and peak theta frequency accounted for 54% e65% of the variance in tACS-related performance improvements, which sustained for a month. Conclusion: These results demonstrate the importance of individual differences in neuroanatomy and neurophysiology in tACS research and help account for inconsistent effects across studies.
a Oscillations in sensory cortex, under frontal control, desynchronize during attentive preparation. Here, in a selective attention study with simultaneous EEG in humans of either sex, we first demonstrate that diminished anticipatory a synchrony between the midfrontal region of the dorsal attention network and ventral visual sensory cortex [frontal-sensory synchrony (FSS)] significantly correlates with greater task performance. Then, in a double-blind, randomized controlled study in healthy adults, we implement closedloop neurofeedback (NF) of the anticipatory a FSS signal over 10 d of training. We refer to this closed-loop experimental approach of rapid NF integrated within a cognitive task as cognitive NF (cNF). We show that cNF results in significant trial-by-trial modulation of the anticipatory a FSS measure during training, concomitant plasticity of stimulus-evoked a/h responses, as well as transfer of benefits to response time (RT) improvements on a standard test of sustained attention. In a third study, we implement cNF training in children with attention deficit hyperactivity disorder (ADHD), replicating trial-by-trial modulation of the anticipatory a FSS signal as well as significant improvement of sustained attention RTs. These first findings demonstrate the basic mechanisms and translational utility of rapid cognitive-task-integrated NF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.