In heterogeneous catalysis, olefin oligomerization is typically performed on immobilized transition metal ions, such as Ni2+ and Cr3+. Here we report that silica-supported, single site catalysts containing immobilized, main group Zn2+ and Ga3+ ion sites catalyze ethylene and propylene oligomerization to an equilibrium distribution of linear olefins with rates similar to that of Ni2+. The molecular weight distribution of products formed on Zn2+ is similar to Ni2+, while Ga3+ forms higher molecular weight olefins. In situ spectroscopic and computational studies suggest that oligomerization unexpectedly occurs by the Cossee-Arlman mechanism via metal hydride and metal alkyl intermediates formed during olefin insertion and β-hydride elimination elementary steps. Initiation of the catalytic cycle is proposed to occur by heterolytic C-H dissociation of ethylene, which occurs at about 250 °C where oligomerization is catalytically relevant. This work illuminates new chemistry for main group metal catalysts with potential for development of new oligomerization processes.
Ni cation sites exchanged onto microporous materials catalyze ethene oligomerization to butenes and heavier oligomers but also undergo rapid deactivation. The use of mesoporous supports has been reported previously to alleviate deactivation in regimes of high ethene pressures and low temperatures that cause capillary condensation of ethene within mesoporous voids. Here, we reproduce these prior findings on mesoporous Ni‐MCM‐41 and report that, in sharp contrast, reaction conditions that nominally correspond to ethene capillary condensation in microporous Ni‐Beta or Ni‐FAU zeolites do not mitigate deactivation, likely because confinement within microporous voids restricts the formation of condensed phases of ethene that are effective at solvating and desorbing heavier intermediates that are precursors to deactivation. Deactivation rates are found to transition from a first‐order to a second‐order dependence on Ni site density in Ni‐FAU zeolites with increasing ethene pressure, suggesting a transition in the dominant deactivation mechanism involving a single Ni site to one involving two Ni sites, reminiscent of the effects of increasing H2 pressure on changing the kinetic order of deactivation in our prior work on Ni‐Beta zeolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.