Molecular evolutionary rate variation in Gossypium (cotton) was characterized using sequence data for 48 nuclear genes from both genomes of allotetraploid cotton, models of its diploid progenitors, and an outgroup. Substitution rates varied widely among the 48 genes, with silent and replacement substitution levels varying from 0.018 to 0.162 and from 0.000 to 0.073, respectively, in comparisons between orthologous Gossypium and outgroup sequences. However, about 90% of the genes had silent substitution rates spanning a more narrow threefold range. Because there was no evidence of rate heterogeneity among lineages for any gene and because rates were highly correlated in independent tests, evolutionary rate is inferred to be a property of each gene or its genetic milieu rather than the clade to which it belongs. Evidence from approximately 200,000 nucleotides (40,000 per genome) suggests that polyploidy in Gossypium led to a modest enhancement in rates of nucleotide substitution. Phylogenetic analysis for each gene yielded the topology expected from organismal history, indicating an absence of gene conversion or recombination among homoeologs subsequent to allopolyploid formation. Using the mean synonymous substitution rate calculated across the 48 genes, allopolyploid cotton is estimated to have formed circa 1.5 million years ago (MYA), after divergence of the diploid progenitors about 6.7 MYA.
Seed movement guidelines for restoration activities are lacking for most native grasses, forbs, and shrubs. The forestry community has decades of experience in establishing seed zones and seed movement guidelines that may be of value to restoration managers. We review the history of seed zone development in forest trees, with emphasis on the Pacific Northwest, and make some suggestions concerning seed transfer guidelines for other native plants. K E Y W O R D Sseed movement, genetic variation, adaptation ITIS (2002)he forestry community has been restoring, replanting, and reforesting lands with native tree species for decades in North America and for centuries in Europe. This work and early provenance tests show large amounts of source-related genetic variation within species for traits that are associated with adaptation, such as growth traits, cold hardiness, and phenology. As a consequence, the forestry community in the US Pacific Northwest (Oregon and Washington) initiated forest tree seed certification and a system of seed zones in the 1960s. These seed zones have been modified over time to incorporate new research information. Although adaptive variation in forest trees is usually continuous across the landscape, zones with distinct boundaries generally have been used to control seed use for administrative reasons. A seed zone is a mapped area with fixed boundaries in which seeds or plant materials can be transferred with minimal risk of maladaptation and, this is important in forestry, with minimal risk of a loss in productivity. Continuous zones, or seed transfer guidelines, are similar in that they recommend how far seeds can be transferred from point of origin, and describe the relative risk associated with that transfer.
Environmental DNA (eDNA) assays for single‐ and multi‐species detection show promise for providing standardized assessment methods for diverse taxa, but techniques for evaluating multiple taxonomically divergent assemblages are in their infancy. We evaluated whether microfluidic multiplex metabarcoding on the Fluidigm Access Array™ platform and high‐throughput sequencing could identify diverse stream and riparian assemblages from 48 taxon‐general and taxon‐specific metabarcode primers. eDNA screening was paired with electrofishing along a stream continuum to evaluate congruence between methods. A fish hatchery located midway along the stream continuum provided a dispersal barrier, and a point source for non‐native White Sturgeon (Acipencer transmontanus). Microfluidic metabarcoding had 87% accuracy with respect to electrofishing and detected all 13 species electrofishing observed. Taxon‐specific barcoding primers were more successful than taxon‐general universal metabarcoding primers at classifying sequences to species. Both types of markers detected a transition from downstream sites dominated by multiple fish species, to upstream sites dominated by a single species; however, we failed to detect a complementary transition in amphibian occupancy. White Sturgeon was only detected at the hatchery outflow, indicating eDNA transport was not detectable ~2.4 km from its source. Overall, we identified 878 predicted taxa. Most sequences (50.1%) derived from fish (Actinopteri, Petromyzontidae), oomycetes (21.3%), arthropoda (classes Insecta, Decapoda; 16.5%), and apicomplexan parasites (3.8%). Taxa accounting for ~1% or less of sequences included freshwater red algae, diatoms, amphibians, and beaver. Our work shows that microfluidic metabarcoding can survey multiple phyla per assay, providing fine discrimination required to resolve closely related species, and enable data‐driven prioritization for multiple forest health objectives.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Premise of the study:We investigated whether wood metabolite profiles from direct analysis in real time (time-of-flight) mass spectrometry (DART-TOFMS) could be used to determine the geographic origin of Douglas-fir wood cores originating from two regions in western Oregon, USA.Methods:Three annual ring mass spectra were obtained from 188 adult Douglas-fir trees, and these were analyzed using random forest models to determine whether samples could be classified to geographic origin, growth year, or growth year and geographic origin. Specific wood molecules that contributed to geographic discrimination were identified.Results:Douglas-fir mass spectra could be differentiated into two geographic classes with an accuracy between 70% and 76%. Classification models could not accurately classify sample mass spectra based on growth year. Thirty-two molecules were identified as key for classifying western Oregon Douglas-fir wood cores to geographic origin.Discussion:DART-TOFMS is capable of detecting minute but regionally informative differences in wood molecules over a small geographic scale, and these differences made it possible to predict the geographic origin of Douglas-fir wood with moderate accuracy. Studies involving DART-TOFMS, alone and in combination with other technologies, will be relevant for identifying the geographic origin of illegally harvested wood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.