We successfully fabricate three-mode erbium doped fiber with a confined Er(3+) doped ring structure and experimentally characterize the amplifier performance with a view to mode-division multiplexed (MDM) transmission. The differential modal gain was effectively mitigated by controlling the relative thickness of the ring-doped layer in the active fiber and pump launch conditions. A detailed study of the modal gain properties, amplifier performance in a MDM transmission system and inter-modal cross-gain modulation and associated transient effects is presented.
This work reports for the first time the development of enhanced conductivity, graphenedoped photo-patternable hybrid organic-inorganic ionogels and the effect of the subsequent materials condensation on the conductivity and mechanical stability of threedimensional microstructures fabricated by multi-photon polymerisation (MPP). Ionogels were based on photocurable silicon/zirconium hybrid sol-gel materials and phosphonium (trihexyltetradecylphosphonium dicyanamide [P6,6,6,14][DCA] ionic liquid (IL). To optimise the dispersion of graphene within the ionogel matrices, aqueous solutions of graphene were prepared, as opposed to the conventional graphene powder approach, and employed as catalysts of hydrolysis and condensation reactions occurring in the sol-gel process.Ionogels were prepared via a two step process by varying the hydrolysis degree from 25 to 50%, IL content between 0-50 w/w%, and the inorganic modifier (zirconate complex) concentration from 30 to 60 mol.% against the photocurable ormosil and they were characterised via Raman, Electrochemical Impedance Spectroscopy and Transmission Electron Microscopy. MPP was performed on the hybrid ionogels, resulting in threedimensional microstructures that were characterised using scanning electron microscopy.It is clearly demonstrated that the molecular formulation of the ionogels, including the concentration of graphene and the zirconate network modifier, play a critical role in the conductivity of the ionogels and influence the resulting mechanical stability of the fabricated three-dimensional microstructures. This work aims to establish for the first time the relationship between the molecular design and condensation of materials in the physico-chemistry and dynamic of ionogels.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.