Living cells are constantly exposed to a variety of complex mechanical stimuli which are thought to be critical in the control of tissue structure and function. Endothelial and smooth muscle cells in the blood vessel are ideal candidates for the study of blood flow-induced cellular regulation. We describe here a cone-plate viscometer apparatus which is specially-designed for studying the effect of fluid shear stress on large populations of adherent ceils in vitro. Using conventional polystyrene tissue culture plates, the apparatus is self-contained, fits inside a standard tissue culture incubator, and provides 75-150 cm 2 of useful surface area for cell growth. This capability makes it ideal for studying gene regulation using Northern analysis, nuclear runoff transcription, transfection with reporter constructs, as well as immunochemical staining. The closed-volume design of the device is also wellsuited for isotopic labelling, pharmacological studies, and for the detection of minute amounts of secreted cell products. The setup allows the use of either steady, time-and direction-varying laminar, or turbulent shear stress. We provide a detailed assembly procedure and review the method for computing shear stress magnitude and Reynolds number. Ink flow analysis, dynamic response characterization, and LDH measurements are presented to confirm the device's fluid mechanical properties and demonstrate the absence of cell injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.