Some of the longest and most comprehensive marine ecosystem monitoring programs were established in the Gulf of Alaska following the environmental disaster of the Exxon Valdez oil spill over 30 years ago. These monitoring programs have been successful in assessing recovery from oil spill impacts, and their continuation decades later has now provided an unparalleled assessment of ecosystem responses to another newly emerging global threat, marine heatwaves. The 2014–2016 northeast Pacific marine heatwave (PMH) in the Gulf of Alaska was the longest lasting heatwave globally over the past decade, with some cooling, but also continued warm conditions through 2019. Our analysis of 187 time series from primary production to commercial fisheries and nearshore intertidal to offshore oceanic domains demonstrate abrupt changes across trophic levels, with many responses persisting up to at least 5 years after the onset of the heatwave. Furthermore, our suite of metrics showed novel community-level groupings relative to at least a decade prior to the heatwave. Given anticipated increases in marine heatwaves under current climate projections, it remains uncertain when or if the Gulf of Alaska ecosystem will return to a pre-PMH state.
The average sizes of Pacific salmon have declined in some areas in the Northeast Pacific over the past few decades, but the extent and geographic distribution of these declines in Alaska is uncertain. Here, we used regression analyses to quantify decadal trends in length and age at maturity in ten datasets from commercial harvests, weirs, and spawner abundance surveys of Chinook salmon Oncorhynchus tshawytscha throughout Alaska. We found that on average these fish have become smaller over the past 30 years (~6 generations), because of a decline in the predominant age at maturity and because of a decrease in age-specific length. The proportion of older and larger 4-ocean age fish in the population declined significantly (P < 0.05) in all stocks examined by return year or brood year. Our analyses also indicated that the age-specific lengths of 4-ocean fish (9 of 10 stocks) and of 3-ocean fish (5 of 10 stocks) have declined significantly (P < 0.05). Size-selective harvest may be driving earlier maturation and declines in size, but the evidence is not conclusive, and additional factors, such as ocean conditions or competitive interactions with other species of salmon, may also be responsible. Regardless of the cause, these wide-spread phenotypic shifts influence fecundity and population abundance, and ultimately may put populations and associated fisheries at risk of decline.
The straying of hatchery salmon may harm wild salmon populations through a variety of ecological and genetic mechanisms. Surveys of pink (Oncorhynchus gorbuscha), chum (O. keta) and sockeye (O. nerka) salmon in wild salmon spawning locations in Prince William Sound (PWS), Alaska since 1997 show a wide range of hatchery straying. The analysis of thermally marked otoliths collected from carcasses indicate that 0-98% of pink salmon, 0-63% of chum salmon and 0-93% of sockeye salmon in spawning areas are hatchery fish, producing an unknown number of hatcherywild hybrids. Most spawning locations sampled (77%) had hatchery pink salmon from three or more hatcheries, and 51% had annual escapements consisting of more than 10% hatchery pink salmon during at least one of the years surveyed. An exponential decay model of the percentage of hatchery pink salmon strays with distance from hatcheries indicated that streams throughout PWS contain more than 10% hatchery pink salmon. The prevalence of hatchery pink salmon strays in streams increased throughout the spawning season, while the prevalence of hatchery chum salmon decreased. The level of hatchery salmon strays in many areas of PWS are beyond all proposed thresholds (2-10%), which confounds wild salmon escapement goals and may harm the productivity, genetic diversity and fitness of wild salmon in this region
Individuals relying on natural resource extraction for their livelihood face high income variability driven by a mix of environmental, biological, management, and economic factors. Key to managing these industries is identifying how regulatory actions and individual behavior affect income variability, financial risk, and, by extension, the economic stability and the sustainable use of natural resources. In commercial fisheries, communities and vessels fishing a greater diversity of species have less revenue variability than those fishing fewer species. However, it is unclear whether these benefits extend to the actions of individual fishers and how year-to-year changes in diversification affect revenue and revenue variability. Here, we evaluate two axes by which fishers in Alaska can diversify fishing activities. We show that, despite increasing specialization over the last 30 years, fishing a set of permits with higher species diversity reduces individual revenue variability, and fishing an additional permit is associated with higher revenue and lower variability. However, increasing species diversity within the constraints of existing permits has a fishery-dependent effect on revenue and is usually (87% probability) associated with increased revenue uncertainty the following year. Our results demonstrate that the most effective option for individuals to decrease revenue variability is to participate in additional or more diverse fisheries. However, this option is expensive, often limited by regulations such as catch share programs, and consequently unavailable to many individuals. With increasing climatic variability, it will be particularly important that individuals relying on natural resources for their livelihood have effective strategies to reduce financial risk. diversity-stability relationship | Bayesian variance function regression | income variability | natural resource management | ecological portfolio effects I t can be difficult for individuals to sustain a livelihood from natural resource extraction. These livelihoods tend to have high annual variability in income relative to other professions (1, 2). In addition to income variability from economic sources, such as changes in demand or prices, individuals dependent on natural resources are also subject to biological and environmental variability (3). For example, drought and flooding are a major source of risk for agricultural food security and farmers' incomes (4), and catastrophic disease outbreaks and wildfires increase risk for the logging industry (5).Individuals who rely on natural resources for income develop strategies to reduce income variability. For example, farmers may diversify their crops or include off-farm income sources to buffer against environmental and market shocks, as well as longterm climatic trends and seasonality (6-8). However, otherwise well-intentioned regulations may limit how individuals diversify, or may incentivize against diversification. For instance, crop subsidies in the United States may incentivize some farms ...
Glaciers have shaped past and present habitats for Pacific salmon (Oncorhynchus spp.) in North America. During the last glacial maximum, approximately 45% of the current North American range of Pacific salmon was covered in ice. Currently, most salmon habitat occurs in watersheds in which glacier ice is present and retreating. This synthesis examines the multiple ways that glacier retreat can influence aquatic ecosystems through the lens of Pacific salmon life cycles. We predict that the coming decades will result in areas in which salmon populations will be challenged by diminished water flows and elevated water temperatures, areas in which salmon productivity will be enhanced as downstream habitat suitability increases, and areas in which new river and lake habitat will be formed that can be colonized by anadromous salmon. Effective conservation and management of salmon habitat and populations should consider the impacts of glacier retreat and other sources of ecosystem change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.