The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. Most of what we know about the higher-level relationships among fish lineages has been based on morphology, but rapid influx of molecular studies is changing many established systematic concepts. We report a comprehensive molecular phylogeny for bony fishes that includes representatives of all major lineages. DNA sequence data for 21 molecular markers (one mitochondrial and 20 nuclear genes) were collected for 1410 bony fish taxa, plus four tetrapod species and two chondrichthyan outgroups (total 1416 terminals). Bony fish diversity is represented by 1093 genera, 369 families, and all traditionally recognized orders. The maximum likelihood tree provides unprecedented resolution and high bootstrap support for most backbone nodes, defining for the first time a global phylogeny of fishes. The general structure of the tree is in agreement with expectations from previous morphological and molecular studies, but significant new clades arise. Most interestingly, the high degree of uncertainty among percomorphs is now resolved into nine well-supported supraordinal groups. The order Perciformes, considered by many a polyphyletic taxonomic waste basket, is defined for the first time as a monophyletic group in the global phylogeny. A new classification that reflects our phylogenetic hypothesis is proposed to facilitate communication about the newly found structure of the tree of life of fishes. Finally, the molecular phylogeny is calibrated using 60 fossil constraints to produce a comprehensive time tree. The new time-calibrated phylogeny will provide the basis for and stimulate new comparative studies to better understand the evolution of the amazing diversity of fishes.
Over half of all vertebrates are “fishes”, which exhibit enormous diversity in morphology, physiology, behavior, reproductive biology, and ecology. Investigation of fundamental areas of vertebrate biology depend critically on a robust phylogeny of fishes, yet evolutionary relationships among the major actinopterygian and sarcopterygian lineages have not been conclusively resolved. Although a consensus phylogeny of teleosts has been emerging recently, it has been based on analyses of various subsets of actinopterygian taxa, but not on a full sample of all bony fishes. Here we conducted a comprehensive phylogenetic study on a broad taxonomic sample of 61 actinopterygian and sarcopterygian lineages (with a chondrichthyan outgroup) using a molecular data set of 21 independent loci. These data yielded a resolved phylogenetic hypothesis for extant Osteichthyes, including 1) reciprocally monophyletic Sarcopterygii and Actinopterygii, as currently understood, with polypteriforms as the first diverging lineage within Actinopterygii; 2) a monophyletic group containing gars and bowfin (= Holostei) as sister group to teleosts; and 3) the earliest diverging lineage among teleosts being Elopomorpha, rather than Osteoglossomorpha. Relaxed-clock dating analysis employing a set of 24 newly applied fossil calibrations reveals divergence times that are more consistent with paleontological estimates than previous studies. Establishing a new phylogenetic pattern with accurate divergence dates for bony fishes illustrates several areas where the fossil record is incomplete and provides critical new insights on diversification of this important vertebrate group.
We describe the complete sequence of the 16,596-nucleotide mitochondrial genome of the zebrafish (Danio rerio); contained are 13 protein genes, 22 tRNAs, 2 rRNAs, and a noncoding control region. Codon usage in protein genes is generally biased toward the available tRNA species but also reflects strand-specific nucleotide frequencies. For 19 of the 20 amino acids, the most frequently used codon ends in either A or C, with A preferred over C for fourfold degenerate codons (the lone exception was AUG: methionine). We show that rates of sequence evolution vary nearly as much within vertebrate classes as between them, yet nucleotide and amino acid composition show directional evolutionary trends, including marked differences between mammals and all other taxa. Birds showed similar compositional characteristics to the other nonmammalian taxa, indicating that the evolutionary trend in mammals is not solely due to metabolic rate and thermoregulatory factors. Complete mitochondrial genomes provide a large character base for phylogenetic analysis and may provide for robust estimates of phylogeny. Phylogenetic analysis of zebrafish and 35 other taxa based on all protein-coding genes produced trees largely, but not completely, consistent with conventional views of vertebrate evolution. It appears that even with such a large number of nucleotide characters (11,592), limited taxon sampling can lead to problems associated with extensive evolution on long phyletic branches.
Oxidative phosphorylation (OXPHOS), the major energy-producing pathway in aerobic organisms, includes protein subunits encoded by both mitochondrial (mt) and nuclear (nu) genomes. How these independent genomes have coevolved is a long-standing question in evolutionary biology. Although mt genes evolve faster than most nu genes, maintenance of OXPHOS structural stability and functional efficiency may involve correlated evolution of mt and nu OXPHOS genes. The nu OXPHOS genes might be predicted to exhibit accelerated evolutionary rates to accommodate the elevated substitution rates of mt OXPHOS subunits with which they interact. Evolutionary rates of nu OXPHOS genes should, therefore, be higher than that of nu genes that are not involved in OXPHOS (nu non-OXPHOS). We tested the compensatory evolution hypothesis by comparing the evolutionary rates (synonymous substitution rate dS and nonsynonymous substitution rate dN) among 13 mt OXPHOS genes, 60 nu OXPHOS genes, and 77 nu non-OXPHOS genes in vertebrates (7 fish and 40 mammal species). The results from a combined analysis of all OXPHOS subunits fit the predictions of the hypothesis. However, results from two OXPHOS complexes did not fit this pattern when analyzed separately. We found that the dN of nu OXPHOS genes for “core” subunits (those involved in the major catalytic activity) was lower than that of “noncore” subunits, whereas there was no significant difference in dN between genes for nu non-OXPHOS and core subunits. This latter finding suggests that compensatory changes play a minor role in the evolution of OXPHOS genes and that the observed accelerated nu substitution rates are due largely to reduced functional constraint on noncore subunits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.