The biopsychosocial model of pain dominates the scientific community's understanding of chronic pain. Indeed, the biopsychosocial approach describes pain and disability as a multidimensional, dynamic integration among physiological, psychological, and social factors that reciprocally influence one another. In this article, we review two categories of studies that evaluate the contributions of psychosocial factors to the experience of chronic pain. First, we consider general psychosocial variables including distress, trauma, and interpersonal factors. Additionally, we discuss pain-specific psychosocial variables including catastrophizing, expectations, and pain-related coping. Together, we present a diverse array of psychological, social, and contextual factors and highlight the need to consider their roles in the development, maintenance, and treatment of chronic pain conditions.
The epithelial-mesenchymal transition (EMT) contributes to cancer metastasis. Two ZEB family members, ZEB1 and ZEB2(SIP1), inhibit transcription of the E-cadherin gene and induce EMT in vitro. However, their relevance to human cancer is insufficiently studied. Here, we performed a comparative study of SIP1 and ZEB1 proteins in cancer cell lines and in one form of human malignancy, carcinoma of the bladder. Whereas ZEB1 protein was expressed in all E-cadherin-negative carcinoma cell lines, being in part responsible for the high motility of bladder cancer cells, SIP1 was hardly ever detectable in carcinoma cells in culture. However, SIP1 represented an independent factor of poor prognosis (P ؍ 0.005) in a series of bladder cancer specimens obtained from patients treated with radiotherapy. In contrast, ZEB1 was rarely expressed in tumor tissues; and E-cadherin status did not correlate with the patients' survival. SIP1 protected cells from UV-and cisplatin-induced apoptosis in vitro but had no effect on the level of DNA damage. The anti-apoptotic effect of SIP1 was independent of either cell cycle arrest or loss of cell-cell adhesion and was associated with reduced phosphorylation of ATM/ATR targets in UV-treated cells. The prognostic value of SIP1 and its role in DNA damage response establish a link between genetic instability and metastasis and suggest a potential importance for this protein as a therapeutic target. In addition, we conclude that the nature of an EMT pathway rather than the deregulation of E-cadherin per se is critical for the progression of the disease and patients' survival. E pithelial mesenchymal transition (EMT) is a genetic program controlling cell migration during embryonic development and in wound healing (1, 2). Aberrant activation of EMT programs occurs in cells of epithelial tumors and contributes to the formation of cancer stem cells and metastasis (1-4). EMT is characterized by the loss of epithelial and the acquisition of mesenchymal features. EMT programs are controlled by several master regulators including TWIST, SNAIL (SNAI1 and SNAI2), and ZEB (ZEB1/␦EF1/TCF8 and SIP1/ZEB2) protein family members. These proteins act downstream in EMTinducing signal transduction pathways activated by growth factors, integrin engagement and hypoxia (1-3). Their expression is tightly regulated at the posttranscriptional level. Recent reports highlighted the importance of miR-200 microRNA family in the regulation of ZEB1 and SIP1 protein expression (5). ZEB proteins bind proximal E-boxes within the E-cadherin gene (cdh1) promoter and repress transcription by recruiting corepressor complexes (6). Likewise, they directly repress numerous genes encoding components of the epithelial junctional complex and cell polarity factors (7,8). The relevance of ZEB proteins to tumor progression has been studied in several forms of human cancer. Expression of ZEB1 correlated with the aggressive phenotype in various histological types of endometrial carcinoma and was detected in sarcomatous compartment of endometri...
Cellular stress responses can be activated following functional defects in organelles such as mitochondria and the endoplasmic reticulum. Mitochondrial dysfunction caused by loss of the serine protease HtrA2 leads to a progressive movement disorder in mice and has been linked to parkinsonian neurodegeneration in humans. Here, we demonstrate that loss of HtrA2 results in transcriptional upregulation of nuclear genes characteristic of the integrated stress response, including the transcription factor CHOP, selectively in the brain. We also show that loss of HtrA2 results in the accumulation of unfolded proteins in the mitochondria, defective mitochondrial respiration and enhanced production of reactive oxygen species that contribute to the induction of CHOP expression and to neuronal cell death. CHOP expression is also significantly increased in Parkinson's disease patients' brain tissue. We therefore propose that this brain-specific transcriptional response to stress may be important in the advance of neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.