The inducible isoform of the 70-kDa heat shock protein (HSP) family, HSP 72, has been shown to protect cells from protein-damaging stressors and has been associated with myocardial protection. Because exercise is capable of increasing HSP 72 content, we determined whether exercise induction of HSP 72 also provided myocardial protection. Twenty-eight rats (n = 7 per group) were divided into control, heat-shocked (15 min at 42 degrees C), and two exercised groups. Exercise consisted of either one or three bouts (on 3 consecutive days) of treadmill running for 60 min at 30 m/min. Twenty-four hours after heat shock or exercise, hearts were placed on a Langendorff apparatus and subjected to 30 min of global ischemia followed by 30 min of reperfusion. Left ventricular developed pressure (LVDP), maximal rate of contraction and relaxation (+/- dP/dt, respectively), coronary flow, catalase activity, and HSP 72 content were determined. During reperfusion, hearts from heat-shocked animals and animals subjected to three bouts of exercise recovered a greater percentage of preischemic LVDP and +/- dP/dt compared with controls or animals that exercised only once. Compared with hearts from controls, HSP 72 content was significantly elevated in the hearts of heat-shocked animals and in animals subjected to three bouts of exercise, but not in animals that exercised only once. These results suggest that exercise induction of HSP 72 can confer an enhanced postischemic recovery and may explain, at least in part, the myocardial protection associated with exercise.
Basic cardiac electrophysiology is foundational to understanding normal cardiac function in terms of rate and rhythm and initiation of cardiac muscle contraction. The primary clinical tool for assessing cardiac electrical events is the electrocardiogram (ECG), which provides global and regional information on rate, rhythm, and electrical conduction as well as changes in electrical activity associated with cardiac disease, particularly ischemic heart disease. This teaching review is written at a level appropriate for first- and second-year medical students. Specific concepts discussed include ion equilibrium potentials, electrochemical forces driving ion movements across membranes, the role of ion channels in determining membrane resting potentials and action potentials, and the conduction of action potentials within the heart. The electrophysiological basis for the ECG is then described, followed by discussion on how ischemia alters cellular electrophysiology and ECG recordings, with particular emphasis on changes in T waves and ST segments of the ECG.
The purpose of this study was to determine whether a vasodilator reserve exists in respiratory muscles and forelimb skeletal muscles in miniature swine during treadmill exercise. Blood flow (BF) was measured with radiolabeled microspheres during preexercise and before and after dipyridamole (DYP; 1 mg/kg iv) at 2 min of treadmill exercise at 11.2 (70% Vo2 max) and 17.6 km/h (Vo2 max). Muscle BFs were increased during exercise, and the relationship between exercise intensity and BF varied among the muscles. The high-oxidative extensor muscles and the flexor muscles attained peak BFs at 11.2 km/h, whereas the more superficial, lower oxidative extensor muscles showed increases in BF up to maximal exercise. During running at 11.2 km/h, DYP produced increases in BF only in cardiac muscle, respiratory muscle and the medial head of the triceps muscle (MHT), which is composed of 91% slow-twitch oxidative (SO) fibers. During maximal exercise (17.6 km/h), DYP produced a 31-mmHg decrease in mean arterial pressure (MAP) and increases in vascular conductance in all muscles studied. BF was only increased in MHT and cardiac muscle. We conclude that vasodilator reserve remains in skeletal muscle and respiratory muscle even during maximal exercise in swine. If it is assumed that DYP-induced vasodilation in a muscle sample is indicative of adenosine production, these results suggest that SO skeletal muscle (MHT) and respiratory muscle are similar to cardiac muscle in that they produce adenosine even when adequately perfused. Furthermore, during maximal exercise, all skeletal muscle appears to produce adenosine, suggesting that muscle BF is restricted under these conditions.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.