Three new molybdenyl iodates, KMoO3(IO3) (1), RbMoO3(IO3) (2), and CsMoO3(IO3) (3), have been prepared through the hydrothermal reactions of MoO3 with AIO4 (A = K, Rb, or Cs) at 180 C. These compounds are isolated as nearly colorless, air-stable crystals. Single-crystal X-ray diffraction experiments reveal that 1 possesses a corrugated layered structure constructed from molybdenum oxide chains that are bridged by iodate anions. The puckering of the layers is caused by the alignment of bent molybdenyl (MoO2(2+)) groups along one side of the molybdenum oxide chains. The K+ cations separate these layers from one another and serve to balance charge. In contrast, compounds 2 and 3, which are isostructural, form three-dimensional structures with small cavities filled with Rb+ or Cs+ cations. The differences between the structures of 1 and those of 2 and 3 are due to rotation of the molybdenyl units as translation occurs down the molybdenum oxide chains in order to accommodate the increased size of the Rb+ and Cs+ cations. This rotation allows for the iodate anions to bridge the molybdenum oxide chains in an additional dimension, creating a three-dimensional network structure. Furthermore, while 1 crystallizes in a centrosymmetric space group, 2 and 3 crystallize in polar space groups. Second-harmonic generation measurements on 2 and 3 show large responses of 400x alpha-quartz. Differential scanning calorimetry measurements demonstrate that 2 and 3 are thermally stable to 494 and 486 C, respectively. UV-vis diffuse reflectance spectra of these compounds show a high degree of transparency from 1 to 3 eV and a band gap of 3.1 eV.
Vulcanisation is a process of transforming a plastic rubber compound into a highly elastic product by forming a three-dimensional cross-linked network structure in the rubber matrix. Many systems have been developed to vulcanise rubber compounds, among which sulphur and peroxide curing systems remain the most desirable. The application of sulphur systems leads to the forming of sulphidic cross-links between elastomer chains, while carbon–carbon bonds are formed in peroxide-curing. Both vulcanisation systems provide certain benefits to the cross-linked rubber articles, but also some disadvantages. The present work seeks to provide an overview on both vulcanisation systems; their composition, possibilities of their application, reaction mechanisms, structure of the cross-links formed and the main feature of the final cross-linked materials – vulcanisates.
Vulcanization or curing is one of the most important processes in rubber technologies. During this process, plastic rubber compounds by parallel and subsequent physical and mainly chemical reactions change into highly elastic products—vulcanizates. The fundamental goal of curing is forming chemical cross-links between rubber macromolecules, which leads to the formation of a three-dimensional network or rubber matrix. A number of curing systems have been introduced in cross-linking of elastomers; each system has its own characteristics and composition; therefore, vulcanizates with different properties also can be prepared. We characterize organic peroxides as curing agents and their decomposition mechanisms and characteristics and bring a detailed view to understanding mechanisms between peroxides and different types of rubber matrices. Then, we focus on the classification and characterization of co-agents used in peroxide cross-linking and explain the mutual interactions and reaction mechanisms between peroxide, co-agents, and rubber matrices in relation to the properties of prepared materials. Finally, the drawbacks and the main features of final cross-linked materials are outlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.