NASA is continuing to develop over-the-rotor acoustic liners for turbofan applications. A series of low Technology Readiness Level experiments were conducted to better understand the acoustic and aerodynamic effects of these acoustic liners. The final experiment included the evaluation of four acoustic casing treatment concepts and two baseline configurations in an internal flow axial compressor facility with a 1.5 pressure-ratio high-bypass turbofan rotor. An inlet in-duct array was utilized to extract sound power levels propagating forward from the turbofan rotor. The effect of a circumferentially grooved relative to a hardwall fan case was found to reduce the in-duct sound power level by about 1.5dB for frequencies less than 2kHz while increasing noise from 4 to 8kHz by as much as 7.5dB at low fan speeds. The four acoustic treatment concepts were incorporated into the bottoms of the circumferential grooves and found to provide an additional 1 to 2dB sound power level reduction under 2kHz. The sound power level reduction was found to be even greater, 2.5 to 3.5dB, when evaluating the reduction on rotor alone duct modes (co-rotating modes). The acoustic treatments also appeared to reduce multiple pure tone noise at transonic fan speeds. Depending on the acoustic treatment concept, the high-frequency noise created by the circumferential grooves was reduced by 1.5 to 5 dB. The total noise reduction from acoustic treatments embedded into the bottoms of circumferential grooves relative to a hardwall baseline was found to be 2.5 to 3.5dB sound power level. The sound power level reduction for rotor alone (co-rotating) modes was found to be 3.5 to 4.5dB. These results show the potential for significant turbofan noise reduction by incorporating acoustic treatments over-the-rotor.
A wide-ranging series of tests have been completed that seek to map the effects of installation, including jet by jet interaction effects, on exhaust noise from various nozzles in forward flight. The primary data was far-field acoustic spectral directivity. The goals of the test series were (i) to generate enough data for empirical models of the different effects, and (ii) to provide data for advanced computational noise predictions methods applied to simplified yet realistic configurations. Data is presented that demonstrate several checks on data quality and that provide an overview of trends observed to date. Among the findings presented here: (i) Data was repeatable between jet rigs for single nozzles with and without surfaces to within ±0.5dB. (ii) The presence of a second jet caused a strong reduction of the summed noise in the plane of the two plumes and an increase over the expected source doubling in most other azimuthal planes. (iii) The impact of the second jet was reduced when the jets were unheated. (iv) The impact of adding a second isolated rectangular jet was relatively independent of the nozzle aspect ratio up to aspect ratio 8:1. (v) Forward flight had similar impact on a high aspect ratio (8:1) jet as on an axisymmetric jet, except at the peak noise angle where the impact was less. (vi) The effect of adding a second round jet to a tightly integrated nozzle where the nozzle lip was less than a diameter from the surface was very dependent upon the length of the surface downstream of the nozzle. (vii) When the nozzles were rectangular and tightly integrated with the airframe surface the impact of a second jet was very dependent upon how close together the two jets were. This paper serves as an overview of the test; other papers presented in the same conference will give more detailed analysis of the results.
Over the last 15 years, over-the-rotor acoustic treatments have been evaluated by NASA with varying success. Recently, NASA has been developing the next generation of over-the-rotor acoustic treatments for fan noise reduction. The NASA Glenn Research Center's Advanced Noise Control Fan was used as a Low Technology Readiness Level test bed. A rapid prototyped in-duct array consisting of 50 microphones was employed, and used to correlate the in-duct analysis to the far-field acoustic levels and to validate an existing beam-former method. The goal of this testing was to improve the Technology Readiness Level of various over-the-rotor acoustic treatments by advancing the understanding of the physical mechanisms and projecting the far-field acoustic benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.