Lifestyle changes and treatment with metformin both reduced the incidence of diabetes in persons at high risk. The lifestyle intervention was more effective than metformin.
OBJECTIVETo examine the global prevalence and major risk factors for diabetic retinopathy (DR) and vision-threatening diabetic retinopathy (VTDR) among people with diabetes.RESEARCH DESIGN AND METHODSA pooled analysis using individual participant data from population-based studies around the world was performed. A systematic literature review was conducted to identify all population-based studies in general populations or individuals with diabetes who had ascertained DR from retinal photographs. Studies provided data for DR end points, including any DR, proliferative DR, diabetic macular edema, and VTDR, and also major systemic risk factors. Pooled prevalence estimates were directly age-standardized to the 2010 World Diabetes Population aged 20–79 years.RESULTSA total of 35 studies (1980–2008) provided data from 22,896 individuals with diabetes. The overall prevalence was 34.6% (95% CI 34.5–34.8) for any DR, 6.96% (6.87–7.04) for proliferative DR, 6.81% (6.74–6.89) for diabetic macular edema, and 10.2% (10.1–10.3) for VTDR. All DR prevalence end points increased with diabetes duration, hemoglobin A1c, and blood pressure levels and were higher in people with type 1 compared with type 2 diabetes.CONCLUSIONSThere are approximately 93 million people with DR, 17 million with proliferative DR, 21 million with diabetic macular edema, and 28 million with VTDR worldwide. Longer diabetes duration and poorer glycemic and blood pressure control are strongly associated with DR. These data highlight the substantial worldwide public health burden of DR and the importance of modifiable risk factors in its occurrence. This study is limited by data pooled from studies at different time points, with different methodologies and population characteristics.
IMPORTANCE Despite concern about an “epidemic,” there are limited data on trends in prevalence of either type 1 or type 2 diabetes across US race and ethnic groups. OBJECTIVE To estimate changes in the prevalence of type 1 and type 2 diabetes in US youth, by sex, age, and race/ethnicity between 2001 and 2009. DESIGN, SETTING, AND PARTICIPANTS Case patients were ascertained in 4 geographic areas and 1 managed health care plan. The study population was determined by the 2001 and 2009 bridged-race intercensal population estimates for geographic sites and membership counts for the health plan. MAIN OUTCOMES AND MEASURES Prevalence (per 1000) of physician-diagnosed type 1 diabetes in youth aged 0 through 19 years and type 2 diabetes in youth aged 10 through 19 years. RESULTS In 2001, 4958 of 3.3 million youth were diagnosed with type 1 diabetes for a prevalence of 1.48 per 1000 (95% CI, 1.44–1.52). In 2009, 6666 of 3.4 million youth were diagnosed with type 1 diabetes for a prevalence of 1.93 per 1000 (95% CI, 1.88–1.97). In 2009, the highest prevalence of type 1 diabetes was 2.55 per 1000 among white youth (95% CI, 2.48–2.62) and the lowest was 0.35 per 1000 in American Indian youth (95% CI, 0.26–0.47) and type 1 diabetes increased between 2001 and 2009 in all sex, age, and race/ethnic subgroups except for those with the lowest prevalence (age 0–4 years and American Indians). Adjusted for completeness of ascertainment, there was a 21.1% (95% CI, 15.6%–27.0%) increase in type 1 diabetes over 8 years. In 2001, 588 of 1.7 million youth were diagnosed with type 2 diabetes for a prevalence of 0.34 per 1000 (95% CI, 0.31–0.37). In 2009, 819 of 1.8 million were diagnosed with type 2 diabetes for a prevalence of 0.46 per 1000 (95% CI, 0.43–0.49). In 2009, the prevalence of type 2 diabetes was 1.20 per 1000 among American Indian youth (95% CI, 0.96–1.51); 1.06 per 1000 among black youth (95% CI, 0.93–1.22); 0.79 per 1000 among Hispanic youth (95% CI, 0.70–0.88); and 0.17 per 1000 among white youth (95% CI, 0.15–0.20). Significant increases occurred between 2001 and 2009 in both sexes, all age-groups, and in white, Hispanic, and black youth, with no significant changes for Asian Pacific Islanders and American Indians. Adjusted for completeness of ascertainment, there was a 30.5% (95% CI, 17.3%–45.1%) overall increase in type 2 diabetes. CONCLUSIONS AND RELEVANCE Between 2001 and 2009 in 5 areas of the United States, the prevalence of both type 1 and type 2 diabetes among children and adolescents increased. Further studies are required to determine the causes of these increases.
JUDITH WYLIE-ROSETT, EDD, RD FOR THE DIABETES PREVENTION PROGRAM RESEARCH GROUPOBJECTIVE -Diabetes Prevention Program (DPP) participants randomized to the intensive lifestyle intervention (ILS) had significantly reduced risk of diabetes compared with placebo participants. We explored the contribution of changes in weight, diet, and physical activity on the risk of developing diabetes among ILS participants.RESEARCH DESIGN AND METHODS -For this study, we analyzed one arm of a randomized trial using Cox proportional hazards regression over 3.2 years of follow-up.RESULTS -A total of 1,079 participants were aged 25-84 years (mean 50.6 years, BMI 33.9 kg/m 2 ). Weight loss was the dominant predictor of reduced diabetes incidence (hazard ratio per 5-kg weight loss 0.42 [95% CI 0.35-0.51]; P Ͻ 0.0001). For every kilogram of weight loss, there was a 16% reduction in risk, adjusted for changes in diet and activity. Lower percent of calories from fat and increased physical activity predicted weight loss. Increased physical activity was important to help sustain weight loss. Among 495 participants not meeting the weight loss goal at year 1, those who achieved the physical activity goal had 44% lower diabetes incidence.CONCLUSIONS -Interventions to reduce diabetes risk should primarily target weight reduction. Diabetes Care 29:2102-2107, 2006T he Diabetes Prevention Program (DPP) reported a 58% reduction in the incidence of diabetes over almost 3 years in subjects treated with an intensive lifestyle intervention (ILS) compared with participants treated with placebo (1). The ILS involved changes in diet and physical activity aimed at producing weight loss, but the study did not randomly assign each component of the intervention. However, there was variation in the change in diet, physical activity, and weight loss among ILS participants (2). Thus, we analyzed the relative contributions of changes in diet, physical activity, or weight loss to the reduction in diabetes incidence and assessed the contribution of diet and activity changes on weight loss. This report extends the understanding of how the ILS resulted in lower diabetes incidence (1) by assessing the impact of meeting intervention goals and on the changes in risk factors among individuals randomized to the ILS.RESEARCH DESIGN AND METHODS -The design, methods, recruitment, and characteristics of the DPP participants have been reported elsewhere (3,4). In summary, participants were aged Ն25 years, had a BMI of Ն24 kg/m 2 (Ն22 kg/m 2 in Asian Americans), and had impaired glucose tolerance during an oral glucose tolerance test, based on DPP criteria (5). Participants were excluded if they had diabetes or a number of other conditions or medications. All participants gave written informed consent after approval by the appropriate institutional review board. ILSThe ILS has been described (6). Goals were to reduce weight by 7% from baseline, to achieve and/or maintain at least 150 min per week of moderate physical activity, and to reduce total dietary fat to Ͻ25% of calorie...
Context-Prediction models to identify healthy individuals at high risk of cardiovascular disease have limited accuracy. A low ankle brachial index is an indicator of atherosclerosis and has the potential to improve prediction.Objective-To determine if the ankle brachial index provides information on the risk of cardiovascular events and mortality independently of the Framingham Risk Score and can improve risk prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.