Anthropogenic disturbance is considered a risk factor in the establishment of non‐indigenous species (NIS); however, few studies have investigated the role of anthropogenic disturbance in facilitating the establishment and spread of NIS in marine environments. A baseline survey of native and NIS was undertaken in conjunction with a manipulative experiment to determine the effect that heavy metal pollution had on the diversity and invasibility of marine hard‐substrate assemblages. The study was repeated at two sites in each of two harbours in New South Wales, Australia. The survey sampled a total of 47 sessile invertebrate taxa, of which 15 (32%) were identified as native, 19 (40%) as NIS, and 13 (28%) as cryptogenic. Increasing pollution exposure decreased native species diversity at all study sites by between 33% and 50%. In contrast, there was no significant change in the numbers of NIS. Percentage cover was used as a measure of spatial dominance, with increased pollution exposure leading to increased NIS dominance across all sites. At three of the four study sites, assemblages that had previously been dominated by natives changed to become either extensively dominated by NIS or equally occupied by native and NIS alike. No single native or NIS was repeatedly responsible for the observed changes in native species diversity or NIS dominance at all sites. Rather, the observed effects of pollution were driven by a diverse range of taxa and species. These findings have important implications for both the way we assess pollution impacts, and for the management of NIS. When monitoring the response of assemblages to pollution, it is not sufficient to simply assess changes in community diversity. Rather, it is important to distinguish native from NIS components since both are expected to respond differently. In order to successfully manage current NIS, we first need to address levels of pollution within recipient systems in an effort to bolster the resilience of native communities to invasion.
Vessel hull-fouling is increasingly recognised as one of the major vectors for the transfer of marine non-indigenous species. For hundreds of years, copper (Cu) has been used as a primary biocide to prevent the establishment of fouling assemblages on ships' hulls. Some non-indigenous fouling taxa continue to be transferred via hull-fouling despite the presence of Cu antifouling biocides. In addition, several of these species appear to enjoy a competitive advantage over similar native taxa within metal-polluted environments. This metal tolerance may further assist their establishment and spread in new habitats. This review synthesises existing research on the links between Cu and the invasion of fouling species, and shows that, with respect to the vector of hull-fouling, tolerance to Cu has the potential to play a role in the transfer of non-indigenous fouling organisms. Also highlighted are the future directions for research into this important nexus between industry, ecology and environmental management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.