Geophysical techniques can be used to examine the spatial distribution of subsurface geophysical properties to delineate horizontally and vertically the active layer, permafrost and taliks. Spatial and temporal changes in subsurface geophysical properties due to permafrost cooling, warming, aggradation or degradation can also be assessed through geophysical monitoring. This paper reviews the geophysical methods most frequently applied in mountain and arctic/subarctic lowland permafrost investigations. Key results and recommendations based on the analysis of the applicability and reliability of different geophysical techniques for permafrost studies are summarised. Emphasis is put on the tomographic capabilities of geophysical methods. Recent advances in application and data interpretation are shown in relation to five case studies, and future perspectives are highlighted. Copyright © 2008 John Wiley & Sons, Ltd.
A systematic approach was used for the interpretation of the electrical resistivity tomography carried out on two permafrost mounds at Umiujaq in Nunavik, Canada, to assess their internal structure and conditions. Prior information under the form of a geocryologic model of the permafrost mounds was integrated in the inversion of the pseudo-section of apparent electrical resistivity. The geocryologic model was developed from the synthesis of previous field investigations, including shallow and deep sampling, temperature and electrical resistivity logging, and cone penetration tests performed in the permafrost mounds. Values of electrical resistivity were ascribed to the different layers making of the geocryologic model to define a synthetic resistivity model of the permafrost mounds used as a reference model to constrain the inversion. The constrained resistivity model clearly show the presence of ice-rich cores in the permafrost mounds underscored by high resistivity values in excess of 30 000 Ωm, while the unfrozen zones surrounding the permafrost mounds are characterized by resistivity values lower than 1000 Ωm. The spatial distribution of unfrozen water and ice contents in the permafrost mounds were also assessed according to empirical relationships between the electrical resistivity and water contents. The ice content is highly variable and can be as high as 80% in the ice-rich cores, while the unfrozen water content varies between 2% and 5%. The integration of prior information in the inversion process leads to a more realistic constrained resistivity model showing sharp resistivity contrasts expected at the boundaries such as the permafrost table and base.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.