The joint estimation of an object and the aberrations of an incoherent imaging system from multiple images incorporating phase diversity is investigated. Maximum-likelihood estimation is considered under additive Gaussian and Poisson noise models. Expressions for an aberration-only objective function that accommodates an arbitrary number of diversity images and its gradient are derived for the case of a Gaussian noise model. Expressions for the log-likelihood function and its gradient are presented for the case of Poisson noise. An expectation-maximization algorithm that enforces a structed for use in the Poisson noise case.
IMPORTANCE Chemotherapy may induce alopecia. Although scalp cooling devices have been used to prevent this alopecia, efficacy has not been assessed in a randomized clinical trial.OBJECTIVES To assess whether a scalp cooling device is effective at reducing chemotherapy-induced alopecia and to assess adverse treatment effects. DESIGN, SETTING, AND PARTICIPANTSMulticenter randomized clinical trial of women with breast cancer undergoing chemotherapy. Patients were enrolled from December 9, 2013, to September 30, 2016. One interim analysis was planned to allow the study to stop early for efficacy. Data reported are from the interim analysis. This study was conducted at 7 sites in the United States, and 182 women with breast cancer requiring chemotherapy were enrolled and randomized.INTERVENTIONS Participants were randomized to scalp cooling (n = 119) or control (n = 63). Scalp cooling was done using a scalp cooling device. MAIN OUTCOMES AND MEASURESThe primary efficacy end points were successful hair preservation assessed using the Common Terminology Criteria for Adverse Events version 4.0 scale (grade 0 [no hair loss] or grade 1 [<50% hair loss not requiring a wig] were considered to have hair preservation) at the end of 4 cycles of chemotherapy by a clinician unaware of treatment assignment, and device safety. Secondary end points included wig use and scores on the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30, Hospital Anxiety and Depression Scale, and a summary scale of the Body Image Scale.RESULTS At the time of the interim analysis, 142 participants were evaluable. The mean (SD) age of the patients was 52.6 (10.1) years; 36% (n = 51) received anthracycline-based chemotherapy and 64% (n = 91) received taxane-based chemotherapy. Successful hair preservation was found in 48 of 95 women with cooling (50.5%; 95% CI, 40.7%-60.4%) compared with 0 of 47 women in the control group (0%; 95% CI, 0%-7.6%) (success rate difference, 50.5%; 95% CI, 40.5%-60.6%). Because the 1-tailed P value from the Fisher exact test was <.001, which crossed the superiority boundary (P = .0061), the data and safety monitoring board recommended study termination on September 26, 2016. There were no statistically significant differences in changes in any of the scales of quality of life from baseline to chemotherapy cycle 4 among the scalp cooling and control groups. Only adverse events related to device use were collected; 54 adverse events were reported in the cooling group, all grades 1 and 2. There were no serious adverse device events.CONCLUSIONS AND RELEVANCE Among women with stage I to II breast cancer receiving chemotherapy with a taxane, anthracycline, or both, those who underwent scalp cooling were significantly more likely to have less than 50% hair loss after the fourth chemotherapy cycle compared with those who received no scalp cooling. Further research is needed to assess longer-term efficacy and adverse effects.
Phase-diversitytechniques provide a novel observational method for overcomming the effects of turbulence and instrument-induced aberrations in ground-based astronomy. Two implementations of phase-diversity techniques that differ with regard to noise model, estimator, optimization algorithm, method of regularization, and treatment of edge effects are described. Reconstructions of solar granulation derived by applying these two implementations to common data sets are shown to yield nearly identical images. For both implementations, reconstructions from phase-diverse speckle data (involving multiple realizations of turbulence) are shown to be superior to those derived from conventional phase-diversity data (involving a single realization). Phase-diverse speckle reconstructions are shown to achieve near diffraction-limited resolution and are validated by internal and external consistency tests, including a comparison with a reconstruction using a well-accepted speckle-imaging method.
A segmented-aperture telescope such as the Multiple-Mirror Telescope will suffer from phase errors unless the segments are aligned to within a small fraction of a wavelength. Such a coherent alignment of the segments is difficult to achieve in real time. An alternative is to record the images degraded by phase errors and to restore them after detection by using phase-retrieval techniques. In this paper we describe the use of Gonsalves's phasediversity method (which was previously used to combat atmospheric turbulence) to correct imagery blurred by a misaligned segmented-aperture telescope. Two images are recorded simultaneously:the usual degraded image in the focal plane and a second degraded image in an out-of-focus plane. An iterative gradient-search algorithm finds the phase error of the telescope that is consistent with both degraded images. We refer to this technique as the method of multiple-plane measurements with iterative reconstruction. The final image is obtained by a WienerHelstrom filtering of the degraded image using the retrieved phase errors. The results of reconstruction experiments performed with simulated data including the effects of noise are shown for the case of random piston phase errors on each of six segments.
We demonstrate steady-state focusing of coherent light through dynamic scattering media. The phase of an incident beam is controlled both spatially and temporally using a reflective, 1020-segment MEMS spatial light modulator, using a coordinate descent optimization technique. We achieve focal intensity enhancement of between 5 and 400 for dynamic media with speckle decorrelation time constants ranging from 0.4 seconds to 20 seconds. We show that this optimization approach combined with a fast spatial light modulator enables focusing through dynamic media. The capacity to enhance focal intensity despite transmission through dynamic scattering media could enable advancement in biological microscopy and imaging through turbid environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.