The cell biology of caveolae is a rapidly growing area of biomedical research. Caveolae are known primarily for their ability to transport molecules across endothelial cells, but modern cellular techniques have dramatically extended our view of caveolae. They form a unique endocytic and exocytic compartment at the surface of most cells and are capable of importing molecules and delivering them to specific locations within the cell, exporting molecules to extracellular space, and compartmentalizing a variety of signaling activities. They are not simply an endocytic device with a peculiar membrane shape but constitute an entire membrane system with multiple functions essential for the cell. Specific diseases attack this system: Pathogens have been identified that use it as a means of gaining entrance to the cell. Trying to understand the full range of functions of caveolae challenges our basic instincts about the cell.
CONTENTS
Membrane lateral heterogeneity is accepted as a requirement for the function of biological membranes and the notion of lipid rafts gives specificity to this broad concept. However, the lipid raft field is now at a technical impasse because the physical tools to study biological membranes as a liquid that is ordered in space and time are still being developed. This has lead to a disconnection between the concept of lipid rafts as derived from biochemical and biophysical assays and their existence in the cell. Here, we compare the concept of lipid rafts as it has emerged from the study of synthetic membranes with the reality of lateral heterogeneity in biological membranes. Further application of existing tools and the development of new tools are needed to understand the dynamic heterogeneity of biological membranes.
The surface membrane of cells is studded with morphologically distinct regions, or domains, like microvilli, cell-cell junctions, and coated pits. Each of these domains is specialized for a particular function, such as nutrient absorption, cell-cell communication, and endocytosis. Lipid domains, which include caveolae and rafts, are one of the least understood membrane domains. These domains are high in cholesterol and sphingolipids, have a light buoyant density, and function in both endocytosis and cell signaling. A major mystery, however, is how resident molecules are targeted to lipid domains. Here, we propose that the molecular address for proteins targeted to lipid domains is a lipid shell.
The clathrin-coated pit lattice is held onto the plasma membrane by an integral membrane protein that binds the clathrin AP-2 subunit with high affinity. In vitro studies have suggested that this protein controls the assembly of the pit because membrane bound AP-2 is required for lattice assembly. If so, the AP-2 binding site must be a resident protein of the coated pit and recycle with other receptors that enter cells through this pathway. Proper recycling, however, would require the switching off of AP-2 binding to allow the binding site to travel through the endocytic pathway unencumbered. Evidence for this hypothesis has been revealed by the cationic amphiphilic class of drugs (CAD), which have previously been found to inhibit receptor recycling. Incubation of human fibroblasts in the presence of these drugs caused clathrin lattices to assemble on endosomal membranes and at the same time prevented coated pit assembly at the cell surface. These effects suggest that CADs reverse an on/off switch that controls AP-2 binding to membranes. We conclude that cells have a mechanism for switching on and off AP-2 binding during the endocytic cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.