Neural circuits sit in a dynamic balance between excitation (E) and inhibition (I). Fluctuations in E:I balance have been shown to influence neural computation, working memory, and information flow, while more drastic shifts and aberrant E:I patterns are implicated in numerous neurological and psychiatric disorders. Current methods for measuring E:I dynamics require invasive procedures that are difficult to perform in behaving animals, and nearly impossible in humans. This has limited the ability to examine the full impact that E:I shifts have in cognition and disease. In this study, we develop a computational model to show that E:I changes can be estimated from the power law exponent (slope) of the electrophysiological power spectrum. Predictions from the model are validated in published data from two species (rats and macaques). We find that reducing E:I ratio via the administration of general anesthetic in macaques results in steeper power spectra, tracking conscious state over time. This causal result is supported by inference from known anatomical E:I changes across the depth of rat hippocampus, as well as oscillatory theta-modulated dynamic shifts in E:I. Our results provide evidence that E:I ratio may be inferred from electrophysiological recordings at many spatial scales, ranging from the local field potential to surface electrocorticography. This simple method for estimating E:I ratio-one that can be applied retrospectively to existing data-removes a major hurdle in understanding a currently difficult to measure, yet fundamental, aspect of neural computation.
Highlights d Long-term, single-cell transcriptomics reveals cortical organoid developmental dynamics d Cortical organoids exhibit phase-amplitude coupling during network-synchronous events d Differential role of glutamate and GABA in initiating and maintaining oscillations d Network-level events are similar to the human preterm neonatal EEG features
Complex cognitive functions such as working memory and decision-making require information maintenance over seconds to years, from transient sensory stimuli to long-term contextual cues. While theoretical accounts predict the emergence of a corresponding hierarchy of neuronal timescales, direct electrophysiological evidence across the human cortex is lacking. Here, we infer neuronal timescales from invasive intracranial recordings. Timescales increase along the principal sensorimotor-to-association axis across the entire human cortex, and scale with single-unit timescales within macaques. Cortex-wide transcriptomic analysis shows direct alignment between timescales and expression of excitation- and inhibition-related genes, as well as genes specific to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are functionally dynamic: prefrontal cortex timescales expand during working memory maintenance and predict individual performance, while cortex-wide timescales compress with aging. Thus, neuronal timescales follow cytoarchitectonic gradients across the human cortex, and are relevant for cognition in both short- and long-terms, bridging microcircuit physiology with macroscale dynamics and behavior.
Electrophysiological signals across species and recording scales exhibit both periodic and aperiodic features. Periodic oscillations have been widely studied and linked to numerous physiological, cognitive, behavioral, and disease states, while the aperiodic "background" 1/f component of neural power spectra has received far less attention. Most analyses of oscillations are conducted on a priori, canonically-defined frequency bands without consideration of the underlying aperiodic structure, or verification that a periodic signal even exists in addition to the aperiodic signal. This is problematic, as recent evidence shows that the aperiodic signal is dynamic, changing with age, task demands, and cognitive state. It has also been linked to the relative excitation/inhibition of the underlying neuronal population. This means that standard analytic approaches easily conflate changes in the periodic and aperiodic signals with one another because the aperiodic parameters-along with oscillation center frequency, power, and bandwidth-are all dynamic in physiologically meaningful, but likely different, ways. In order to overcome the limitations of traditional narrowband analyses and to reduce the potentially deleterious effects of conflating these features, we introduce a novel algorithm for automatic parameterization of neural power spectral densities (PSDs) as a combination of the aperiodic signal and putative periodic oscillations. Notably, this algorithm requires no a priori specification of band limits and accounts for potentially-overlapping oscillations while minimizing the degree to which they are confounded with one another. This algorithm is amenable to large-scale data exploration and analysis, providing researchers with a tool to quickly and accurately parameterize neural power spectra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.