Microbiotic crusts are assemblages of non-vascular plants (mosses, liverworts, algae, lichens, fungi, bacteria and cyanobacteria) which form intimate associations with surface soils. They play a major role in infiltration processes through changes to soil physico-chemical properties, and through their influence on soil surface roughness. Whilst some research suggests that they may restrict infiltration, Australian experience is that they are generally associated with enhanced infiltration. Unlike physical soil crusts, microbiotic crusts stabilize the soil against water and wind erosion, increasing landscape stability, particularly in areas of low vascular plant cover. Microbiotic crusts are thus useful indicators of soil surface condition, and cyanobacteria in the crusts fix nitrogen which may be utilized by developing vascular plant seedlings. Little is known, however, about how they interact with vascular plants and soil invertebrates. Their role in rangeland ecosystems has received renewed attention over the past few years with an increasing interest in ecologically sustainable development of arid and semi-arid grazing systems.In this review we discuss the characteristics and distribution of microbiotic crusts in the rangelands of Australia, their roles in soil and eco!ogical processes and the impacts of fire and grazing. Finally we propose a new system for classifying crusts into functional groups and identify areas requiring further investigation.
Soil salinity (high levels of water-soluble salt) and sodicity (high levels of exchangeable sodium), called collectively salt-affected soils, affect approximately 932 million ha of land globally. Saline and sodic landscapes are subjected to modified hydrologic processes which can impact upon soil chemistry, carbon and nutrient cycling, and organic matter decomposition. The soil organic carbon (SOC) pool is the largest terrestrial carbon pool, with the level of SOC an important measure of a soil's health. Because the SOC pool is dependent on inputs from vegetation, the effects of salinity and sodicity on plant health adversely impacts upon SOC stocks in salt-affected areas, generally leading to less SOC. Saline and sodic soils are subjected to a number of opposing processes which affect the soil microbial biomass and microbial activity, changing CO 2 fluxes and the nature and delivery of nutrients to vegetation. Sodic soils compound SOC loss by increasing dispersion of aggregates, which increases SOC mineralisation, and increasing bulk density which restricts access to substrate for mineralisation. Saline conditions can increase the decomposability of soil organic matter but also restrict access to substrates due to flocculation of aggregates as a result of high concentrations of soluble salts. Saline and sodic soils usually contain carbonates, which complicates the carbon (C) dynamics. This paper reviews soil processes that commonly occur in saline and sodic soils, and their effect on C stocks and fluxes to identify the key issues involved in the decomposition of soil organic matter and soil aggregation processes which need to be addressed to fully understand C dynamics in salt-affected soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.