This technical article discusses design and integration associated with distributed propulsion as a means of providing motive power with significantly reduced emissions and external noise for future aircraft concepts. The technical work reflects activities performed within a European Commission funded Framework 7 project entitled Distributed Propulsion and Ultra-high By-Pass Rotor Study at Aircraft Level, or, DisPURSAL. In this instance, the approach of distributed propulsion includes a Distributed Multiple-Fans Concept driven by a limited number of engine cores as well as one unique solution that integrates the fuselage with a single propulsor (dubbed Propulsive-Fuselage Concept) -both targeting entry-in-service year 2035+. Compared to a state-of-the-art, year 2000 reference aircraft, designs with tighter coupling between airframe aerodynamics and motive power system performance for medium-to-long-range operations indicated potentially a 40-45% reduction in CO 2 -emissions. An evolutionary, year 2035, conventional morphology gas-turbine aircraft was predicted to be -33% in CO 2 -emissions.
Weak shock wave focusing at fold caustics is described by the mixed type elliptic/hyperbolic nonlinear Tricomi equation. This paper presents a new and original numerical method for solving this equation, using a potential formulation and an "exact" numerical solver for handling nonlinearities. Validation tests demonstrate quantitatively the efficiency of the algorithm, which is able to handle complex waveforms as may come out from "optimized" aircraft designed to minimize sonic booms. It provides a real alternative to the approximate method of the hodograph transform. This motivated the application to evaluate the ground track focusing of sonic boom for an accelerating aircraft, by coupling CFD Euler simulations performed around the mock-up on an adaptated mesh grid, atmospheric propagation modeling, and the Tricomi algorithm. The chosen configuration is the European Eurosup mock-up. Convergence of the focused boom at the ground level as a function of the matching distance is investigated to demonstrate the efficiency of the numerical process. As a conclusion, it is indicated how the present work may pave the way towards a study on sonic superboom (focused boom) mitigation.
The design and performance analysis of a wing tip device proposed within the M-DAW project by ONERA is presented. A proto-design process is described and the device was thoroughly assessed (mainly with Reynolds-Averaged Navier-Stokes simulations). The process was further explained through wind-tunnel tests at both low speed and high speed in the pressurised and cryogenic European transonic wind tunnel in Cologne. The device is a downward pointing winglet designed for a retrofit scenario (the wing could be modified only within the 96% – 100% bounds of the span). It was designed to keep the wing root bending moment of the clean wing at cruise unchanged so that the aerodynamic gains are the net gains provided by the device that can be directly installed without structural modifications of the wing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.