NIDDM is characterized by islet amyloid deposits and decreased beta-cell mass. Islet amyloid is derived from the locally expressed protein islet amyloid polypeptide (IAPP). While it is now widely accepted that abnormal aggregation of IAPP has a role in beta-cell death in NIDDM, the mechanism remains unknown. We hypothesized that small IAPP aggregates, rather than mature large amyloid deposits, are cytotoxic. Consistent with this hypothesis, freshly dissolved human (h)-IAPP was cytotoxic when added to dispersed mouse and human islet cells, provoking the formation of abnormal vesicle-like membrane structures in association with vacuolization and cell death. Human islet cell death occurred by both apoptosis and necrosis, predominantly between 24 and 48 h after exposure to h-IAPP. In contrast, the addition to dispersed islet cells of matured h-IAPP containing large amyloid deposits of organized fibrils was seldom associated with vesicle-like structures or features of cell death, even though the cells were often encased in the larger amyloid deposits. Based on these observations, we hypothesized that h-IAPP cytotoxicity is mediated by membrane damage induced by early h-IAPP aggregates. Consistent with this hypothesis, application of freshly dissolved h-IAPP to voltage-clamped planar bilayer membranes (a cell-free in vitro system) also caused membrane instability manifested as a marked increase in conductance, increased membrane electrical noise, and accelerated membrane breakage, effects that were absent using matured h-IAPP or rat IAPP solutions. Light-scattering techniques showed that membrane toxicity corresponded to h-IAPP aggregates containing approximately 25-6,000 IAPP molecules, an intermediate-sized amyloid particle that we term intermediate-sized toxic amyloid particles (ISTAPs). We conclude that freshly dissolved h-IAPP is cytotoxic and that this cytotoxicity is mediated through an interaction of ISTAPs with cellular membranes. Once ISTAPs mature into amyloid deposits comprising >10(6) molecules, the capacity of h-IAPP to cause membrane instability and islet cell death is significantly reduced or abolished. These data may have implications for the mechanism of cell death in other diseases characterized by local amyloid formation (such as Alzheimer's disease).
Chloride intracellular channels (CLICs) are putative pore-forming glutathione-S-transferase homologs that are thought to insert into cell membranes directly from the cytosol. We incorporated soluble, recombinant human CLIC1 into planar lipid bilayers to investigate the associated ion channels, and noted that channel assembly (unlike membrane insertion) required a specific lipid mixture. The channels formed by reduced CLIC1 were similar to those previously recorded from cells and "tip-dip" bilayers, and specific anti-CLIC1 antibodies inhibited them. However, the amplitudes of the filtered single-channel currents were strictly regulated by the redox potential on the "extracellular" (or "luminal") side of the membrane, with minimal currents under strongly oxidizing conditions. We carried out covalent functional modification and site-directed mutagenesis of this controversial ion channel to test the idea that cysteine 24 is a critical redox-sensitive residue located on the extracellular (or luminal) side of membrane CLIC1 subunits, in a cysteine-proline motif close to the putative channel pore. Our findings support a simple structural hypothesis to explain how CLIC1 oligomers form pores in membranes, and suggest that native channels may be regulated by a novel mechanism involving the formation and reduction of intersubunit disulphide bonds.
Many plasma membrane Cl؊ channels have been cloned, including the cystic fibrosis transmembrane conductance regulator and several members of the voltage-gated ClC family. In contrast, very little is known about the molecular identity of intracellular Cl ؊ channels. We used a polymerase chain reaction-based approach to identify candidate genes in mammalian brain and cloned the cDNA corresponding to rat brain p64H1. This encoded a microsomal membrane protein of predicted M r 28,635 homologous to the putative intracellular bovine kidney Cl ؊ channel p64. In situ mRNA hybridization histochemistry showed marked expression in hippocampus and cerebellum, and in vitro expression revealed a large cytoplasmic domain, one membranespanning segment, and a small nonglycosylated N-terminal luminal domain. The predicted protein contained consensus phosphorylation sites for protein kinase C and protein kinase A, and protein kinase C-mediated phosphorylation increased the M r of p64H1 to ϳ43,000, characteristic of the native protein in Western blots. Recombinant p64H1 was immunolocalized to the endoplasmic reticulum of human embryonic kidney 293 and HT-4 cells, and incorporation of human embryonic kidney 293 endoplasmic reticulum vesicles into planar lipid bilayers gave rise to intermediate conductance, outwardly rectifying anion channels. Although p64H1 is the first intracellular Cl ؊ channel component or regulator to be identified in brain, Northern blotting revealed transcripts in many other rat tissues. This suggests that p64H1 may contribute widely to intracellular Cl ؊ transport.
Single Ca 2+ release channels from vesicles of sheep cardiac junctional sarcoplasmic reticulum have been incorporated into uncharged planar lipid bilayers. Single-channel currents were recorded from Ca~+-activated channels that had a Ca ~+ conductance of ~90 pS. Channel open probability increased sublinearly as the concentration of free Ca 2 § was raised at the myoplasmic face, and without additional agonists the channels could not be fully activated even by 100 /~M free Ca z+. Lifetime analysis revealed a minimum of two open and three closed states, and indicates that Ca 2+ activated the channels by interacting with at least one of the closed states to increase the rate of channel opening. Correlations between adjacent lifetimes suggested there were at least two pathways between the open-and closed-state aggregates. An analysis of bursting behavior also revealed correlations between successive burst lengths and the number of openings per burst. The latter had two geometric components, providing additional evidence for at least two open states. One component appeared to comprise unit bursts, and the lifetime of most of these fell within the dominant shorter open-time distribution associated with over 90% of all openings. A cyclic gating scheme is proposed, with channel activation regulated by the binding of Ca z+ to a closed conformation of the channel protein. Mg ~+ may inhibit activation by competing for this binding site, but lifetime and fluctuation analysis suggested that once activated the channels continue to gate normally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.