We present the global mapping of pharmacological space by the integration of several vast sources of medicinal chemistry structure-activity relationships (SAR) data. Our comprehensive mapping of pharmacological space enables us to identify confidently the human targets for which chemical tools and drugs have been discovered to date. The integration of SAR data from diverse sources by unique canonical chemical structure, protein sequence and disease indication enables the construction of a ligand-target matrix to explore the global relationships between chemical structure and biological targets. Using the data matrix, we are able to catalog the links between proteins in chemical space as a polypharmacology interaction network. We demonstrate that probabilistic models can be used to predict pharmacology from a large knowledge base. The relationships between proteins, chemical structures and drug-like properties provide a framework for developing a probabilistic approach to drug discovery that can be exploited to increase research productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.