Under suitable conditions of connectivity or non-bipartiteness, each of the three standard graph products (the Cartesian product, the direct product and the strong product) satisfies the unique prime factorization property, and there are polynomial algorithms to determine the prime factors. This is most easily proved for the Cartesian product. For the other products, current proofs involve a notion of a Cartesian skeleton which transfers their multiplication properties to the Cartesian product. The present article introduces simplified definitions of Cartesian skeletons for the direct and strong products, and provides new, fast and transparent algorithms for their construction. Since the complexity of the prime factorization of the direct and the strong product is determined by the complexity of the construction of the Cartesian skeleton, the new algorithms also improve the complexity of the prime factorizations of graphs with respect to the direct and the strong product. We indicate how these simplifications fit into the existing literature.
We define what appears to be a new construction. Given a graph G and a positive integer k, the reduced kth power of G, denoted G (k) , is the configuration space in which k indistinguishable tokens are placed on the vertices of G, so that any vertex can hold up to k tokens. Two configurations are adjacent if one can be transformed to the other by moving a single token along an edge to an adjacent vertex. We present propositions related to the structural properties of reduced graph powers and, most significantly, provide a construction of minimum cycle bases of G (k). The minimum cycle basis construction is an interesting combinatorial problem that is also useful in applications involving configuration spaces. For example, if G is the state-transition graph of a Markov chain model of a stochastic automaton, the reduced power G (k) is the state-transition graph for k identical (but not necessarily independent) automata. We show how the minimum cycle basis construction of G (k) may be used to confirm that state-dependent coupling of automata does not violate the principle of microscopic reversibility, as required in physical and chemical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.