A series of 4'-substituted and 4',4"-disubstituted 3 alpha-(diphenylmethoxy)tropane analogs were prepared as novel probes for the dopamine transporter. These compounds were evaluated in radiolabeled binding assays for the dopamine, norepinephrine, and serotonin transporters. All of these compounds monophasically displaced [3H]WIN 35,428 binding in rat caudate putamen with Ki values ranging from 11.8 to 2000 nM. The most potent compound in this series was 4',4"-difluoro 3 alpha-(diphenylmethoxy)tropane 7c with a Ki = 11.8 nM. All of the compounds inhibited dopamine uptake in rat caudate putamen (IC50 = 24-4456 nM) which correlated significantly (r = 0.907; p > 0.0001) with binding affinities at the dopamine transporter. None of the compounds demonstrated high-affinity binding at the norepinephrine (Ki > 4800 nM) or serotonin (Ki > 690 nM) transporters. Therefore, the most potent dopamine uptake inhibitors in this series were highly selective for the dopamine transporter. Preliminary behavioral studies of several of these analogs (7a-e) suggested that the compounds did not display a cocaine-like behavioral profile, despite their ability to inhibit dopamine uptake. The present data coupled with the observed differences from cocaine in structure-activity relationships suggested that the 3 alpha-(diphenylmethoxy)tropane analogs may be interacting at a different active site than cocaine on the dopamine transporter and that an additional binding domain might be exploited for the identification of potential therapeutics for the treatment of cocaine abuse.
A series of N-substituted 3 alpha-[bis(4'-fluorophenyl)methoxy]tropane analogues has been prepared that function as dopamine uptake inhibitors. The N-methylated analogue of this series had a significantly higher affinity for the dopamine transporter than the parent compound, N-methyl-3 alpha- (diphenylmethoxy)tropane (benztropine, Cogentin). Yet like the parent compound, it retained high affinity for muscarinic receptors. A series of N-substituted compounds were prepared from nor-3 alpha-[bis(4'-fluorophenyl)methoxy]tropane via acylation followed by hydride reduction of the amide or by direct alkylation. All compounds containing a basic tropane nitrogen displaced [3H]WIN 35,428 at the dopamine transporter (Ki range = 8.5-634 nM) and blocked dopamine uptake (IC50 range = 10-371 nM) in rat caudate putamen, whereas ligands with a nonbasic nitrogen were virtually inactive. None of the compounds demonstrated high binding affinity at norepinephrine or serotonin transporters. Importantly, a separation of binding affinities for the dopamine transporter versus muscarinic m1 receptors was achieved by substitution of the N-methyl group with other N-alkyl or arylalkyl substituents (eg. n-butyl, allyl, benzyl, 3-phenylpropyl, etc.). Additionally, the most potent and selective analogue in this series at the dopamine transporter, N-(4"-phenyl-n-butyl)-3 alpha-[bis(4'-fluorophenyl)methoxy]tropane analogue failed to substitute for cocaine in rats trained to discriminate cocaine from saline. Potentially, new leads toward the development of a pharmacotherapeutic for cocaine abuse and other disorders affecting the dopamine transporter may be discovered.
A series of 2'- and 3'-substituted and 3',3"-disubstituted 3 alpha-(diphenylmethoxy)tropane analogs were designed and synthesized as novel probes for the dopamine transporter. All the analogs were evaluated for displacement of [3H]WIN 35,428 binding at the dopamine transporter and for inhibition of [3H]dopamine uptake in rat caudate putamen. Compounds were observed to monophasically displace [3H]WIN 35,428 binding to the dopamine transporter with affinities of 21.6-1836 nM (Ki). Generally, meta-substituted compounds were more potent than benztropine and equipotent to or slightly less potent than their previously reported para-substituted homologs in inhibiting [3H]WIN 35,428 binding. However, these same meta-substituted analogs were typically less potent than the 4'-substituted analogs in inhibiting [3H]dopamine uptake. Ortho-substituted analogs were generally less potent in both binding and inhibition of uptake at the dopamine transporter than either benztropine or other aryl-substituted homologs. The analogs were also tested for binding at norepinephrine and serotonin transporters as well as muscarinic m1 receptors. None of the compounds in the present study bound with high affinity to either the norepinephrine or serotonin transporters, but all bound to muscarinic m1 receptors with high affinity (K1 = 0.41-2.52 nM). Interestingly, 3'-chloro-3 alpha-(diphenylmethoxy)tropane (5c) produced effects like cocaine in animals trained to discriminate 10 mg/kg cocaine from saline, unlike its 4'-Cl homolog and all of the previously evaluated benztropine analogs. Further evaluation of compound 5c and the other benztropine analogs will undoubtedly prove useful in the elucidation of the role of the dopamine transporter in the reinforcing effects of cocaine and the ultimate identification of a cocaine-abuse treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.