The discovery of the adventitious formation of the potential cancer-causing agent acrylamide in a variety of foods during cooking has raised much concern, but the chemical mechanism(s) governing its production are unclear. Here we show that acrylamide can be released by the thermal treatment of certain amino acids (asparagine, for example), particularly in combination with reducing sugars, and of early Maillard reaction products (N-glycosides). Our findings indicate that the Maillard-driven generation of flavour and colour in thermally processed foods can -- under particular conditions -- be linked to the formation of acrylamide.
Acrylamide is a synthetic monomer with a wide scope of industrial applications, mainly as a precursor in the production of several polymers, such as polyacrylamide. The main uses of polyacrylamides are in water and wastewater treatment processes, pulp and paper processing, and mining and mineral processing. The announcement by the Swedish National Food Administration in April 2002 of the presence of acrylamide predominantly in heat-treated carbohydrate-rich foods sparked intensive investigations into acrylamide, encompassing the occurrence, chemistry, agricultural practices, and toxicology, in order to establish if there is a potential risk to human health from the presence of this contaminant in the human diet. The link of acrylamide in foods to the Maillard reaction and, in particular, to the amino acid asparagine has been a major step forward in elucidating the first feasible chemical route of formation during the preparation and processing of food. Other probably minor pathways have also been proposed, including acrolein and acrylic acid. This review addresses the analytical and mechanistic aspects of the acrylamide issue and summarizes the progress made to date by the European food industries in these key areas. Essentially, it presents experimental results generated under laboratory model conditions, as well as under actual food processing conditions covering different food categories, such as potatoes, biscuits, cereals, and coffee. Since acrylamide formation is closely linked to food composition, factors such as the presence of sugars and availability of free amino acids are also considered. Many new findings that contribute towards a better understanding of the formation and presence of acrylamide in foods are presented. Many national authorities across the world are assessing the dietary exposure of consumers to acrylamide, and scientific projects have commenced to gather new information about the toxicology of acrylamide. These are expected to provide new scientific knowledge that will help to clarify whether or not there is a risk to human health from the consumption of foods containing low amounts of acrylamide.
The formation of acrylamide was studied in low-moisture Maillard model systems (180 degrees C, 5 min) based on asparagine, reducing sugars, Maillard intermediates, and sugar degradation products. We show evidence that certain glycoconjugates play a major role in acrylamide formation. The N-glycosyl of asparagine generated about 2.4 mmol/mol acrylamide, compared to 0.1-0.2 mmol/mol obtained with alpha-dicarbonyls and the Amadori compound of asparagine. 3-Hydroxypropanamide, the Strecker alcohol of asparagine, generated only low amounts of acrylamide ( approximately 0.23 mmol/mol), while hydroxyacetone increased the acrylamide yields to more than 4 mmol/mol, indicating that alpha-hydroxy carbonyls are much more efficient than alpha-dicarbonyls in converting asparagine into acrylamide. The experimental results are consistent with the reaction mechanism based on (i) a Strecker type degradation of the Schiff base leading to azomethine ylides, followed by (ii) a beta-elimination reaction of the decarboxylated Amadori compound to afford acrylamide. The beta-position on both sides of the nitrogen atom is crucial. Rearrangement of the azomethine ylide to the decarboxylated Amadori compound is the key step, which is favored if the carbonyl moiety contains a hydroxyl group in beta-position to the nitrogen atom. The beta-elimination step in the amino acid moiety was demonstrated by reacting under low moisture conditions decarboxylated model Amadori compounds obtained by synthesis. The corresponding vinylogous compounds were only generated if a beta-proton was available, for example, styrene from the decarboxylated Amadori compound of phenylalanine. Therefore, it is suggested that this thermal pathway may be common to other amino acids, resulting under certain conditions in their respective vinylogous reaction products.
Acrylamide occurs in foods commonly consumed in diets worldwide. It is formed from the reaction of reducing sugars (e.g., glucose or fructose) with the amino acid asparagine via the Maillard reaction, which occurs during heat processing of foods, primarily those derived from plant origin, such as potato and cereal products, above 120°C (248°F). The majority of epidemiological studies concerning potential relationships between acrylamide consumption and different types of cancer have indicated no increased risk, except with a few types that warrant further study. Efforts to reduce the formation of acrylamide in food products have resulted in some successes, but there is no common approach that works for all foods. Reduction in some foods is probably not possible. The results from a major toxicological study (aqueous intake of acrylamide by rats and mice) are in the process of being released. The status of current knowledge in these areas is reviewed.
Two analytical methods, one involving the combined use of reverse-phase HPLC and electrochemical detection (HPLC-EC) and one involving a mass spectrometric detection after gas chromatography separation (GC/MS), were developed for the detection of 8-oxoguanine in DNA. In order to obtain quantitative results, 2,6-diamino-8-oxopurine, whose chemical structure and electrochemical response are very similar to 8-oxoguanine, has been employed as an internal standard in the HPLC-EC assay. In the case of the GC/MS method, an isotopically stable (M + 4) 8-oxoguanine has been employed as an internal standard. Both methods are able to detect approximately 1 modification per 10(6) DNA bases. The background level of 8-oxoguanine in DNA as determined by GC/MS is approximately 50-fold higher than that determined by the HPLC-EC assay. The discrepancy between the two methods is due to an artifactual oxidation of guanine during the derivatization reaction as demonstrated by using pure guanine. The amount of 8-oxoguanine in guanine, determined by GC/MS, increases linearly with the time of derivatization, indicating that an oxidation occurs during the silylation reaction. Derivatization under nitrogen atmosphere reduces but does not suppress the artifactual oxidation. The amount of 8-oxoguanine in DNA, quantified by GC/MS, is comparable to that obtained by HPLC-EC when 8-oxoguanine is prepurified by HPLC or by immunoaffinity chromatography, prior to the silylation reaction. The artifactual formation of 8-oxoguanine during the derivatization reaction may explain, at least in part, why the values reported for 8-oxoguanine determination by GC/MS are generally about 1 order of magnitude higher than that determined by HPLC-EC. Prepurification of 8-oxoguanine from guanine is recommended in order to obtain reliable results by GC/MS which may be compared to HPLC-EC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.