The suction dynamics of axial piston pumps become more critical if the pump is to be used at high speeds. In order to prevent air-release and cavitation from occurring within the pump it is necessary to pressurise the pump inlet. As the speed of a pump is increased, higher boost pressures are required, due to the extra losses incurred through the suction line and portplate at the higher flowrates. However, the lack of data regarding axial piston pump behavior at high speeds creates problems for the system designer in selecting suitable boost conditions and for the pump designer in selecting the portplate configuration that is required to reduce fluid-borne-noise levels. This paper discusses the suction performance of piston pumps, and presents experimental and simulation results exploring the behavior of a high-speed axial-piston pump. Different air-release and cavitation models that are suitable for simulation studies are investigated.
This paper describes a dynamic model for slipper-pads that allows lift and tilt behavior to be predicted, including the effects of possible contact with the swashplate or slipper retaining plate. This model has been incorporated in the Bathfp simulation package and used to examine the dynamic stability of slipper-pads over the pumping cycle, and to compare the behavior over a range of pump speeds. The centripetal tilting moments acting on the slipper-pad increase with speed and as a consequence can lead to contact between the slipper and the swashplate at high speed. This is particularly likely to occur as the piston makes the transition between suction and delivery, where the pressure forces acting on the piston-slipper assembly change abruptly. The predicted nature of the swashplate contacts at high speeds correspond closely with witness marks on a dismantled pump. The model presented may also be used for predicting slipper behavior in other types of pump, for example, wobble-plate type pumps, or in piston motors.
The study examined the effects of national culture, self-construals, and power distance on face concerns and facework behaviors during conflicts with parents and sib-
Dowel and screw connections in timber structures behave nonlinearly, even at loads which would be experienced in a structure in normal service. They exhibit hysteresis and creep as a result of both the viscoelastic behaviour of the timber itself and the frictional interaction between the timber and connecting elements, and stress concentrations are created which behave plastically, even at loads well below the nominal yield force of the connection. A fundamental process in the load transfer through such a connection is the embedment of the connector into the timber that surrounds it, and the frictional, nonlinear and time-dependent properties in that process are investigated here. A simple rheological model, a combination of Kelvin-Voigt viscoelastic elements, was fitted to the measured response of a block of timber in embedment by a plain dowel or screw. Experiments were performed in which an oscillating force was applied to the screw or dowel, representative of in-service vibration in a timber structure. The effects of plasticity and viscoelasticity were quantified by comparing equivalent linear stiffnesses for an oscillating load, a shortterm change in static load, and an initial static loading. The results showed a stiffness, on average, 3.8 times higher under oscillating load than under initial static loading with the same peak force. By quantifying and modelling viscoelastic behaviour in timber around a connector, this work contributes to the development of damping and stiffness models for joints under oscillating load. Such models could be used to determine the contribution of connections to the dynamic response of long spans and tall buildings in timber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.