Abstract. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb
geochronology of carbonate minerals, calcite in particular, is rapidly
gaining popularity as an absolute dating method. The high spatial resolution
of LA-ICP-MS U–Pb carbonate geochronology has benefits over traditional
isotope dilution methods, particularly for diagenetic and hydrothermal
calcite, because uranium and lead are heterogeneously distributed on the
sub-millimetre scale. At the same time, this can provide limitations to the method,
as locating zones of radiogenic lead can be time-consuming and “hit or
miss”. Here, we present strategies for dating carbonates with in situ
techniques, through imaging and petrographic techniques to data
interpretation; our examples are drawn from the dating of fracture-filling
calcite, but our discussion is relevant to all carbonate applications. We
review several limitations to the method, including open-system behaviour,
variable initial-lead compositions, and U–daughter disequilibrium. We also
discuss two approaches to data collection: traditional spot analyses guided
by petrographic and elemental imaging and image-based dating that utilises
LA-ICP-MS elemental and isotopic map data.
A rationalized lithostratigraphy for the Great Scar Limestone Group of the southeast Askrigg Block is established. The basal Chapel House Limestone Formation, assessed from boreholes, comprises shallow-marine to supratidal carbonates that thin rapidly northwards across the Craven Fault System, onlapping a palaeotopographical high of Lower Palaeozoic strata. The formation is of late Arundian age in the Silverdale Borehole, its northernmost development. The overlying Kilnsey Formation represents a southward-thickening and upward-shoaling carbonate development on a south-facing carbonate ramp. Foraminiferal/algal assemblages suggest a late Holkerian and early Asbian age, respectively, for the uppermost parts of the lower Scaleber Force Limestone and upper Scaleber Quarry Limestone members, significantly younger than previously interpreted. The succeeding Malham Formation comprises the lower Cove Limestone and upper Gordale Limestone members. Foraminiferal/ algal assemblages indicate a late Asbian age for the formation, contrasting with the Holkerian age previously attributed to the Cove Limestone. The members reflect a change from a partially shallow-water lagoon (Cove Limestone) to more open-marine shelf (Gordale Limestone), coincident with the onset of marked sea-level fluctuations and formation of palaeokarstic surfaces with palaeosoils in the latter. Facies variations along the southern flank of the Askrigg Block, including an absence of fenestral lime-mudstone in the upper part of the Cove Limestone and presence of dark grey cherty grainstone/packstone in the upper part the Gordale Limestone are related to enhanced subsidence during late Asbian movement on the Craven Fault System. This accounts for the marked thickening of both members towards the Greenhow Inlier.
Abstract. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) U-Pb geochronology of carbonate minerals, calcite in particular, is rapidly gaining popularity as an absolute dating method. The technique has proven useful for dating fracture-fill calcite, which provides a powerful record of palaeohydrology, and within certain constraints, can be used to bracket the timing of brittle fracture and fault development. The high spatial resolution of LA-ICP-MS U-Pb carbonate geochronology is beneficial over traditional Isotope Dilution methods, particularly for diagenetic and hydrothermal calcite, because uranium and lead are heterogeneously distributed on the sub-mm scale. At the same time, this can provide limitations to the method, as locating zones of radiogenic lead can be time-consuming and ‘hit or miss’. Here, we present strategies for dating carbonates with in situ techniques, through imaging and petrographic techniques to data interpretation; we focus on examples of fracture-filling calcite, but most of our discussion is relevant to all carbonate applications. We demonstrate these strategies through a series of case studies. We review several limitations to the method, including open system behaviour, variable initial lead compositions, and U-daughter disequilibrium. We also discuss two approaches to data collection: traditional spot analyses guided by petrographic and elemental imaging, and image-based dating that utilises LA-ICP-MS elemental and isotopic map data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.