The global gene expression profiles for 67 human lung tumors representing 56 patients were examined by using 24,000-element cDNA microarrays. Subdivision of the tumors based on gene expression patterns faithfully recapitulated morphological classification of the tumors into squamous, large cell, small cell, and adenocarcinoma. The gene expression patterns made possible the subclassification of adenocarcinoma into subgroups that correlated with the degree of tumor differentiation as well as patient survival. Gene expression analysis thus promises to extend and refine standard pathologic analysis
SummaryThe success of solid tumor growth and metastasis is dependent upon angiogenesis. Neovascularization within the tumor is regulated, in part, by a dual and opposing system of angiogenic and angiostatic factors. We now report that IP-10, a recently described angiostatic factor, is a potent angiostatic factor that regulates non-small cell lung cancer (NSCLC)-derived angiogenesis, tumor growth, and spontaneous metastasis. We initially found significantly elevated levels of IP-10 in freshly isolated human NSCLC samples of squamous cell carcinoma (SCCA). In contrast, levels of IP-10 were equivalent in either normal lung tissue or adenocarcinoma specimens. The neoplastic cells in specimens of SCCA were the predominant cells that appeared to express IP-10 by immunolocalization. Neutralization of IP-10 in SCCA tumor specimens resulted in enhanced tumor-derived angiogenic activity. Using a model of human NSCLC tumorigenesis in SCID mice, we found that NSCLC tumor growth was inversely correlated with levels of plasma or tumor-associated IP-10. IP-10 in vitro functioned as neither an autocrine growth factor nor as an inhibitor of proliferation of the NSCLC cell lines, tkeconstitution of intratumor IP-10 for a period of 8 wk resulted in a significant inhibition of tumor growth, tumor-associated angiogenic activity and neovascularization, and spontaneous lung metastases; whereas, neutralization of IP-10 for 10 wk augmented tumor growth. These findings support the notion that tumor-derived IP-10 is an important endogenous angiostatic factor in NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.