Current neuroimaging techniques have very limited abilities to directly identify and quantify neurotransmitters from brain sections. We have developed a molecular-specific approach for the simultaneous imaging and quantitation of multiple neurotransmitters, precursors, and metabolites, such as tyrosine, tryptamine, tyramine, phenethylamine, dopamine, 3-methoxytyramine, serotonin, GABA, glutamate, acetylcholine, and L-alpha-glycerylphosphorylcholine, in histological tissue sections at high spatial resolutions. The method is employed to directly measure changes in the absolute and relative levels of neurotransmitters in specific brain structures in animal disease models and in response to drug treatments, demonstrating the power of mass spectrometry imaging in neuroscience.
Steroid concentrations within tissues are modulated by intracellular enzymes. Such 'steroid intracrinology' influences hormone-dependent cancers and obesity, and provides targets for pharmacological inhibition. However, no high resolution methods exist to quantify steroids within target tissues. We developed mass spectrometry imaging (MSI), combining matrix assisted laser desorption ionization with on-tissue derivatization with Girard T and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, to quantify substrate and product (11-dehydrocorticosterone and corticosterone) of the glucocorticoid-amplifying enzyme 11β-HSD1. Regional steroid distribution was imaged at 150-200μm resolution in rat adrenal gland and mouse brain sections, and confirmed with collision induced dissociation/liquid extraction surface analysis. In brains of mice with 11β-HSD1 deficiency or inhibition, MSI quantified changes in sub-regional corticosterone/11-dehydrocorticosterone ratio, distribution of inhibitor, and accumulation of the alternative 11β-HSD1 substrate, 7-ketocholesterol. MSI data correlated well with LC-MS/MS in whole brain homogenates. MSI with derivatization is a powerful new tool to investigate steroid biology within tissues.
Efforts to apply nanotechnology in cancer have focused almost exclusively on the delivery of cytotoxic drugs to improve therapeutic index. There has been little consideration of molecularly targeted agents, in particular kinase inhibitors, which can also present considerable therapeutic index limitations. We describe the development of Accurin polymeric nanoparticles that encapsulate the clinical candidate AZD2811, an Aurora B kinase inhibitor, using an ion pairing approach. Accurins increase biodistribution to tumor sites and provide extended release of encapsulated drug payloads. AZD2811 nanoparticles containing pharmaceutically acceptable organic acids as ion pairing agents displayed continuous drug release for more than 1 week in vitro and a corresponding extended pharmacodynamic reduction of tumor phosphorylated histone H3 levels in vivo for up to 96 hours after a single administration. A specific AZD2811 nanoparticle formulation profile showed accumulation and retention in tumors with minimal impact on bone marrow pathology, and resulted in lower toxicity and increased efficacy in multiple tumor models at half the dose intensity of AZD1152, a water-soluble prodrug of AZD2811. These studies demonstrate that AZD2811 can be formulated in nanoparticles using ion pairing agents to give improved efficacy and tolerability in preclinical models with less frequent dosing. Accurins specifically, and nanotechnology in general, can increase the therapeutic index of molecularly targeted agents, including kinase inhibitors targeting cell cycle and oncogenic signal transduction pathways, which have to date proved toxic in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.