The capability to track individuals in CCTV cameras is important for surveillance and forensics alike. However, it is laborious to do over multiple cameras. Therefore, an automated system is desirable. In literature several methods have been proposed, but their robustness against varying viewpoints and illumination is limited. Hence performance in realistic settings is also limited. In this paper, we present a novel method for the automatic re-identification of persons in video from surveillance cameras in a realistic setting. The method is computationally efficient, robust to a wide variety of viewpoints and illumination, simple to implement and it requires no training. We compare the performance of our method to several state-of-the-art methods on a publically available dataset that contains the variety of viewpoints and illumination to allow benchmarking. The results indicate that our method shows good performance and enables a human operator to track persons five times faster.
A camera or display usually has a smaller dynamic range than the human eye. For this reason, objects that can be detected by the naked eye may not be visible in recorded images. Lighting is here an important factor; improper local lighting impairs visibility of details or even entire objects. When a human is observing a scene with different kinds of lighting, such as shadows, he will need to see details in both the dark and light parts of the scene. For grey value images such as IR imagery, algorithms have been developed in which the local contrast of the image is enhanced using local adaptive techniques. In this paper, we present how such algorithms can be adapted so that details in color images are enhanced while color information is retained. We propose to apply the contrast enhancement on color images by applying a grey value contrast enhancement algorithm to the luminance channel of the color signal. The color coordinates of the signal will remain the same. Care is taken that the saturation change is not too high. Gamut mapping is performed so that the output can be displayed on a monitor. The proposed technique can for instance be used by operators monitoring movements of people in order to detect suspicious behavior. To do this effectively, specific individuals should both be easy to recognize and track. This requires optimal local contrast, and is sometimes much helped by color when tracking a person with colored clothes. In such applications, enhanced local contrast in color images leads to more effective monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.