Excitonic solar cells-including organic, hybrid organic-inorganic and dye-sensitized cells (DSCs)-are promising devices for inexpensive, large-scale solar energy conversion. The DSC is currently the most efficient and stable excitonic photocell. Central to this device is a thick nanoparticle film that provides a large surface area for the adsorption of light-harvesting molecules. However, nanoparticle DSCs rely on trap-limited diffusion for electron transport, a slow mechanism that can limit device efficiency, especially at longer wavelengths. Here we introduce a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires. The nanowire anode is synthesized by mild aqueous chemistry and features a surface area up to one-fifth as large as a nanoparticle cell. The direct electrical pathways provided by the nanowires ensure the rapid collection of carriers generated throughout the device, and a full Sun efficiency of 1.5% is demonstrated, limited primarily by the surface area of the nanowire array.
Since the first report of ultraviolet lasing from ZnO nanowires, [1] substantial effort has been devoted to the development of synthetic methodologies for one-dimensional ZnO nanostructures. Among the various techniques described in the literature, evaporation and condensation processes are favored for their simplicity and high-quality products, but these gas-phase approaches generally require economically prohibitive temperatures of 800-900 8C.[2] Despite recent MOCVD schemes that reduced the deposition temperature to 450 8C by using organometallic zinc precursors, [3] the commercial potential of gas-phase-grown ZnO nanowires remains constrained by the expensive and/or insulating (for example, Al 2 O 3 ) substrates required for oriented growth, as well as the size and cost of the vapor deposition systems. A low-temperature, large-scale, and versatile synthetic process is needed before ZnO nanowire arrays find realistic applications in solar energy conversion, light emission, and other promising areas.Solution approaches to ZnO nanowires are appealing because of their low growth temperatures and good potential for scale-up. In this regard, Vayssieres et al. developed a hydrothermal process for producing arrays of ZnO microrods and nanorods on conducting glass substrates at 95 8C. [4,5] Recently, a seeded growth process was used to make helical ZnO rods and columns at a similar temperature.[6] Here we expand on these synthetic methods to produce homogeneous and dense arrays of ZnO nanowires that can be grown on arbitrary substrates under mild aqueous conditions. We present data for arrays on four-inch (ca. 10 cm) silicon wafers and two-inch plastic substrates, which demonstrate the ease of commercial scale-up. The simple two-step procedure yields oriented nanowire films with the largest surface area yet reported for nanowire arrays. The growth process ensures that a majority of the nanowires in the array are in direct contact with the substrate and provide a continuous pathway for carrier transport, an important feature for future electronic devices based on these materials.Well-aligned ZnO nanowire arrays were grown using a simple two-step process. In the first step, ZnO nanocrystals (5-10 nm in diameter) were spin-cast several times onto a four-inch Si(100) wafer to form a 50-200-nm thick film of crystal seeds. Between coatings, the wafer was annealed at 150 8C to ensure particle adhesion to the wafer surface. The ZnO nanocrystals were prepared according to the method of Pacholski. [7] A NaOH solution in methanol (0.03 m) was added slowly to a solution of zinc acetate dihydrate (0.01m) in methanol at 60 8C and stirred for two hours. The resulting nanoparticles are spherical and stable for at least two weeks in solution. After uniformly coating the silicon wafer with ZnO nanocrystals, hydrothermal ZnO growth was carried out by suspending the wafer upside-down in an open crystallizing dish filled with an aqueous solution of zinc nitrate hydrate (0.025 m) and methenamine or diethylenetriamine (0.025 m) at 90 8C. R...
This article surveys recent developments in the rational synthesis of single‐crystalline zinc oxide nanowires and their unique optical properties. The growth of ZnO nanowires was carried out in a simple chemical vapor transport and condensation (CVTC) system. Based on our fundamental understanding of the vapor–liquid–solid (VLS) nanowire growth mechanism, different levels of growth controls (including positional, orientational, diameter, and density control) have been achieved. Power‐dependent emission has been examined and lasing action was observed in these ZnO nanowires when the excitation intensity exceeds a threshold (∼40 kW cm–2). These short‐wavelength nanolasers operate at room temperature and the areal density of these nanolasers on substrate readily reaches 1 × 1010 cm–2. The observation of lasing action in these nanowire arrays without any fabricated mirrors indicates these single‐crystalline, well‐facetted nanowires can function as self‐contained optical resonance cavities. This argument is further supported by our recent near‐field scanning optical microscopy (NSOM) studies on single nanowires.
There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices, including lasersand nonlinear optical frequency converters. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet-blue light-emitting diodes, lasers and photodetectors. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films. Here we report the observation of ultraviolet-blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry-Perot modes (Q approximately 10(3)) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV microJ x cm(-2)) supports the idea that the electron-hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet-blue coherent light sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.