Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. High-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.
Ultrafast processes in matter, such as the electron emission after light absorption, can now be studied using ultrashort light pulses of attosecond duration (10 seconds) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses has raised issues in the interpretation of the experimental results and the comparison with theoretical calculations. We determine photoionization time delays in neon atoms over a 40-electron volt energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake-up, in which a second electron is left in an excited state, and obtain excellent agreement with theoretical calculations, thereby solving a puzzle raised by 7-year-old measurements.
Understanding molecular femtosecond dynamics under intense X-ray exposure is critical to progress in biomolecular imaging and matter under extreme conditions. Imaging viruses and proteins at an atomic spatial scale and on the time scale of atomic motion requires rigorous, quantitative understanding of dynamical effects of intense X-ray exposure. Here we present an experimental and theoretical study of C 60 molecules interacting with intense X-ray pulses from a free-electron laser, revealing the influence of processes not previously reported. Our work illustrates the successful use of classical mechanics to describe all moving particles in C 60 , an approach that scales well to larger systems, for example, biomolecules. Comparisons of the model with experimental data on C 60 ion fragmentation show excellent agreement under a variety of laser conditions. The results indicate that this modelling is applicable for X-ray interactions with any extended system, even at higher X-ray dose rates expected with future light sources.
The pulse duration, and, more generally, the temporal intensity profile of free-electron laser (FEL)\ud pulses, is of utmost importance for exploring the new perspectives offered by FELs; it is a nontrivial\ud experimental parameter that needs to be characterized. We measured the pulse shape of an extreme\ud ultraviolet externally seeded FEL operating in high-gain harmonic generation mode. Two different methods\ud based on the cross-correlation of the FEL pulses with an external optical laser were used. The two methods,\ud one capable of single-shot performance, may both be implemented as online diagnostics in FEL facilities.\ud The measurements were carried out at the seeded FEL facility FERMI. The FEL temporal pulse\ud characteristics were measured and studied in a range of FEL wavelengths and machine settings, and they\ud were compared to the predictions of a theoretical model. The measurements allowed a direct observation of\ud the pulse lengthening and splitting at saturation, in agreement with the proposed theory
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.