SUMMARY The most prominent EEG events in sleep are slow waves, reflecting a slow (<1 Hz) oscillation between up and down states in cortical neurons. It is unknown whether slow oscillations are synchronous across the majority or the minority of brain regions—are they a global or local phenomenon? To examine this, we recorded simultaneously scalp EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical patients. We find that most sleep slow waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions.
High-frequency oscillations (100-200 Hz), termed ripples, have been identified in hippocampal (Hip) and entorhinal cortical (EC) areas of rodents and humans. In contrast, higher-frequency oscillations (250-500 Hz), termed fast ripples (FR), have been described in seizure-generating limbic areas of rodents made epileptic by intrahippocampal injection of kainic acid and observed in humans ipsilateral to areas of seizure initiation. However, quantitative studies supporting the existence of two spectrally distinct oscillatory events have not been carried out in humans nor has the preferential appearance of FR within seizure generating areas received statistical evaluation based on analysis of a large sample of oscillatory events. Interictal oscillations within the bandwidth of 80-500 Hz were detected in Hip and EC areas of patients with mesial temporal lobe epilepsy using wideband EEG recorded during non-rapid eye-movement sleep from chronically implanted depth electrodes. Power spectral analysis showed that oscillations detected from Hip and EC areas were composed of two spectrally distinct groups. The lower-frequency ripple group was defined by a frequency of 96 +/- 14 Hz (median +/- width), while the higher-frequency FR group had a frequency of 262 +/- 59 Hz. FR oscillations were significantly shorter in duration compared with ripple oscillations (P < 0.0001). In regard to the occurrence of FR and ripples in epileptic Hip and EC, the mean ratio of the number of FR to ripples generated in areas ipsilateral to seizure onset was significantly higher compared with the mean ratio of FR to ripple generation from contralateral areas (P = 0.008). Furthermore, sites ipsilateral to seizure onset with hippocampal atrophy had significantly higher ratios compared with sites contralateral to both seizure onset and hippocampal atrophy (P = 0.001). These data provide compelling quantitative and statistical evidence for the existence of two spectrally distinct groups of limbic oscillations that have frequency and duration characteristics similar to those previously described in epileptic rat and human Hip and EC. The strong association between FR and regions of seizure initiation supports the view that FR reflects pathological hypersynchronous events crucially associated with seizure genesis.
Sleep spindles are an electroencephalographic (EEG) hallmark of non-rapid eye movement (NREM) sleep and are believed to mediate many sleep-related functions, from memory consolidation to cortical development. Spindles differ in location, frequency, and association with slow waves, but whether this heterogeneity may reflect different physiological processes and potentially serve different functional roles remains unclear. Here we utilized a unique opportunity to record intracranial depth EEG and single-unit activity in multiple brain regions of neurosurgical patients to better characterize spindle activity in human sleep. We find that spindles occur across multiple neocortical regions, and less frequently also in the parahippocampal gyrus and hippocampus. Most spindles are spatially restricted to specific brain regions. In addition, spindle frequency is topographically organized with a sharp transition around the supplementary motor area between fast (13-15Hz) centroparietal spindles often occurring with slow wave up-states, and slow (9-12Hz) frontal spindles occurring 200ms later on average. Spindle variability across regions may reflect the underlying thalamocortical projections. We also find that during individual spindles, frequency decreases within and between regions. In addition, deeper sleep is associated with a reduction in spindle occurrence and spindle frequency. Frequency changes between regions, during individual spindles, and across sleep may reflect the same phenomenon, the underlying level of thalamocortical hyperpolarization. Finally, during spindles neuronal firing rates are not consistently modulated, although some neurons exhibit phase-locked discharges. Overall, anatomical considerations can account well for regional spindle characteristics, while variable hyperpolarization levels can explain differences in spindle frequency.
SUMMARYHigh-frequency oscillations (HFOs) in the 80-200 Hz range can be recorded from normal hippocampus and parahippocampal structures of humans and animals. They are believed to reflect inhibitory field potentials, which facilitate information transfer by synchronizing neuronal activity over long distances. HFOs in the range of 250-600 Hz (fast ripples, FRs) are pathologic and are readily recorded from hippocampus and parahippocampal structures of patients with mesial temporal lobe epilepsy, as well as rodent models of this disorder. These oscillations, and similar HFOs recorded from neocortex of patients, appear to identify brain tissue capable of spontaneous ictogenesis and are believed to reflect the neuronal substrates of epileptogenesis and epileptogenicity. The distinction between normal and pathologic HFOs (pHFOs), however, cannot be made on the basis of frequency alone, as oscillations in the FR frequency range can be recorded from some areas of normal neocortex, whereas oscillations in the ripple frequency range are present in epileptic dentate gyrus where normal ripples never occur and, therefore, appear to be pathologic. The suggestion that FRs may be harmonics of normal ripples is unlikely, because of their spatially distinct generators, and evidence that FRs reflect synchronized firing of abnormally bursting neurons rather than inhibitory field potentials. These synchronous population spikes, however, can fire at ripple frequencies, and their harmonics appear to give rise to FRs. Investigations into the fundamental neuronal processes responsible for pHFOs could provide insights into basic mechanisms of epilepsy. The potential for pHFOs to act as biomarkers for epileptogenesis and epileptogenicity is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.