We study the structural properties of water surrounding a carbon nanotube using molecular dynamics simulations. The interaction potentials involve a description of the carbon nanotube using Morse, harmonic bending, torsion, and Lennard-Jones potentials. The water is described by the flexible Simple Point Charge (SPC) model by Teleman et al., 1 and the carbon-water interactions include a carbon-oxygen Lennard-Jones potential, and an electrostatic quadrupole moment acting between the carbon atoms and the charge sites of the water. Vibration of the breathing mode of the carbon nanotube in water is inferred from the oscillations in carbon-carbon van der Waals energy, and the inverse proportionality between the radius of the carbon nanotube and the breathing frequency is in good agreement with experimental values. The results indicate, that under the present conditions, the presence of the water has a negligible influence on the breathing frequency. The water at the carbon-water interface is found to have a HOH plane nearly tangential to the interface, and the water radial density profile exhibits the characteristic layering also found in the graphite-water system. The average number of hydrogen bonds decreases from a value of 3.73 in the bulk phase to a value of 2.89 at the carbon-water interface. The inclusion of the carbon quadrupole moment is found to have a negligible influence on the structural properties of the water. Energy changes that occur by the process of introducing a carbon nanotube in water are calculated. The creation of a cavity in the bulk water to accommodate the nanotube constitutes the largest energy contribution. Results include an analysis of surface structure and energy values for planar and for concave cylindrical surfaces of water.
SummaryOral immunization with an attenuated Salmonella typhimurium recombinant containing the fulllength Plasmodium berghei circumsporozoite (CS) gene induces protective immunity against P. berghei sporozoite challenge in the absence of antibody. We found that this immunity was mediated through the induction of specific CD8+ T cells since in vivo elimination of CD8+ cells abrogated protection. In vitro studies revealed that this Salmonella-P. berghei CS recombinant induced class I-restricted CD8+ cytotoxic T cells that are directed against the P berghei CS peptide epitope spanning amino acids 242-253 . This is the same peptide that previously was identified as the target of cytotoxic T lymphocytes (CTL) induced by sporozoite immunization. Salmonella-P. fkiparum CS recombinants were constructed that contained either the full-length CS gene or a repeatless gene consisting of CS flanking sequences . Both of these vaccines were able to induce CD8+ CTL directed against P. fakiparum CS peptide 371-390, which is identical to the target of CTL induced by sporozoites and vaccinia CS recombinants. These results directly demonstrate the ability of an intracellular bacteria such as Salmonella to induce class I-restricted CD8+ CTL and illustrate the importance of CD8 + CTL in immunity to malaria .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.